• Title/Summary/Keyword: facilitated reaction

Search Result 86, Processing Time 0.024 seconds

Formation and Dispersion of Nitric Acid Vapor from Stack Flue Gas

  • Park, Mi Jeong;Wu, Shi Chang;Jo, Young Min;Park, Young Koo
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.2
    • /
    • pp.96-107
    • /
    • 2014
  • Extreme recovery of the thermal energy from the combustion of flue gas may bring about early gas condensation resulting in the increased formation of nitric acid vapor. The behavior of the nitric acid formed inside the stack and in the atmosphere was investigated through a computer-aided simulation in this study. Low temperatures led to high conversion rates of the nitrogen oxide to nitric acid, according to the Arrhenius relationship. Larger acid plumes could be formed with the cooled flue gas at $40^{\circ}C$ than the present exiting gas at $115^{\circ}C$. The acid vapor plume of 0.1 ppm extended to 25 m wide and 200 m high. The wind, which had a seasonal local average of 3 m/s, expanded the influencing area to 170 m along the ground level. Its tail stretched 50 m longer at $40^{\circ}C$ than at $115^{\circ}C$. The emission concentration of the acid vapor in the summer season was a little lower than in the winter. However, a warm atmosphere facilitated the Brownian motion of the discharged flue gas, finally leading to more vigorous dispersion.

Hydrogen Production Through Catalytic Dehydrogenation of Decalin over Pt/C Catalyst Using Activated Carbon Aerogel

  • Lee, Gihoon;Kang, Ji Yeon;Jeong, Yeojin;Jung, Ji Chul
    • Korean Journal of Materials Research
    • /
    • v.25 no.4
    • /
    • pp.191-195
    • /
    • 2015
  • To improve its textural properties as a support for platinum catalyst, carbon aerogel was chemically activated with KOH as a chemical agent. Carbon-supported platinum catalyst was subsequently prepared using the prepared carbon supports(carbon aerogel(CA), activated carbon aerogel(ACA), and commercial activated carbon(AC)) by an incipient wetness impregnation. The prepared carbon-supported platinum catalysts were applied to decalin dehydrogenation for hydrogen production. Both initial hydrogen evolution rate and total hydrogen evolution amount were increased in the order of Pt/CA < Pt/AC < Pt/ACA. This means that the chemical activation process served to improve the catalytic activity of carbon-supported platinum catalyst in this reaction. The high surface area and the well-developed mesoporous structure of activated carbon aerogel obtained from the activation process facilitated the high dispersion of platinum in the Pt/ACA catalyst. Therefore, it is concluded that the enhanced catalytic activity of Pt/ACA catalyst in decalin dehydrogenation was due to the high platinum surface area that originated from the high dispersion of platinum.

The Kinetics and Mechanism of the Hydrolysis to Benzoyl Styrene Derivatives (Benzoyl Styrene 유도체의 가수분해 반응 메카니즘과 그 반응속도론적 연구)

  • Lee, Ki-Chang;Yoon, Chul-Hun;Hwang, Sung-Kwy;Oh, Se-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.35-41
    • /
    • 1995
  • The Hydrolysis kinetics of Benzoyl Styrene Derivatives[I]${\sim}$[IV] was investigated by ultraviolet spectrophotometery in 5% dioxane-$H_2O$ at $40^{\circ}C$. The structure of these compounds were ascertained by means of ultraviolet, melting point, IR and NMR spectra. The rate equations which were applied over a wide pH range (pH $1.0{\sim}13.0$) were obtained. The substituent effects on Benzoyl styrene derivatives[I]${\sim}$[IV] were studied, and the hydrolysis were facilitated by electron attracting groups. On the basis of the rate equation and substitutent effect and final product, the plausible hydrolysis reaction mechanism was proposed: At pH 1.0${\sim}$pH 9.0, not relevant to the hydrogenl ion concentration, neutral $H_2O$ molecule competitively attacked on the double bond. By contrary. Above pH 9.0, It was proportional to concentration of hydroxidel ion.

Rate Capability of Electric Double-Layer Capacitor (EDLC) Electrodes According to Pore Length in Spherical Porous Carbons

  • Ka, Bok-H.;Yoon, Song-Hun;Oh, Seung-M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.252-256
    • /
    • 2007
  • A series of spherical porous carbons were prepared via resorcinol-formaldehyde (RF) sol-gel polymerization in the presence of cationic surfactant (CTAB, cetyltrimethylammonium bromide), wherein the carbon sphere size was controlled by varying the CTAB introduction time after a pre-determined period of addition reaction (termed as "pre-curing"). The sphere size gradually decreases with an increase in the pre-curing time within the range of 30-150 nm. The carbons possess two types of pores; one inside carbon spheres (intra-particle pores) and the other at the interstitial sites made by carbon spheres (inter-particle pores). Of the two, the surface exposed on the former was dominant to determine the electric double-layer capacitor (EDLC) performance of porous carbons. As the intra-particle pores were generated inside RF gel spheres by gasification, the pore diameter was similar for all these carbons, thereby the pore length turned out to be a decisive factor controlling the EDLC performance. The charge-discharge voltage profiles and complex capacitance analysis consistently illustrate that the smaller-sized RF carbons deliver a better rate capability, which must be the direct result of facilitated ion penetration into shorter pores.

De-soda Process Using Silica for Fabrication of Low Soda Alumina Powder

  • Park, Sang-Chun;Kim, Dae-Woong;Heo, In-Woong;Lee, Sang-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.3
    • /
    • pp.192-196
    • /
    • 2015
  • Low soda alumina powder was fabricated using silica (${\alpha}$-quartz) as an agent for removing soda components in the alumina. Quartz powder 2 mm in size was added to aluminum hydroxide obtained through the Bayer process, and then the mixture was heated at various temperatures. Finally, the heat-treated powders were sieved for classification. In this study, the effects of the quartz amount and heating temperature on the mechanism of removing soda were examined. A minimum soda content of 0.005 wt% was observed at the conditions of 15 wt% quartz (based on $Al(OH)_3$ amount) heat-treated at $1600^{\circ}C$ for 8 h. The soda components, such as $Na_2O$, NaOH, and $Na_2CO_3$, in alumina were ionized and activated at high temperature, and this facilitated the reaction with quartz silica and alumina producing nepheline. The advantages of using quartz include low iron content and low cost in comparison with the conventional de-soda process using chamotte, another silicate mineral.

Indole Derivatives I, The Kinetics and Mechanism of the Nucleopilic Addition of Thiourea to 1-Benzylindole-3-Acetophenone (인돌유도체 I, 1-Benzylindole-3-acetophenone유도체에 대한 Thiourea의 친핵성 첨가반응 메카니즘과 그 반응속도론적 연구)

  • Lee, Ki-Chang;Hwang, Sung-Kwu;Ryu, Jung-Wook;Hwang, Young-Hyun;Sung, Ki-Chun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.175-181
    • /
    • 1991
  • The kinetics of the addition of 1-benzylindole-3-(p-substituted) acetophenone derivatives was investigated by ultraviolet spectrophotometery in 30% dioxane -$H_2O\;at\;25^{\circ}C$. A rate equation which can be applied over wide pH range was obtained. The Substituent effects on 1-benzylindole-3-(p-substituted) acetophenone derivatives were studied, and addition were facilitated by electron attracting groups. On the base of the rate equation, substituent effect, and general base effect the plausible addition mechanism was proposed : Below pH 3.0, only neutral thiourea molecule was added to the carbon-carbon double bond, and in the range of pH 0.0${\sim}$14.0, netural thiourea molecule and thiourea anion competitively attacted the double bond. By contrast, above pH 10.0, the reaction was dependent upon only the addition of thiourea anion.

Effect of Molecular Weight of Epoxidized Liquid Isoprene Rubber as a Processing aid on the Vulcanizate Structure of Silica Filled NR Compounds

  • Ryu, Gyeongchan;Kim, Donghyuk;Song, Sanghoon;Hwang, Kiwon;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.56 no.4
    • /
    • pp.223-233
    • /
    • 2021
  • In this study, epoxidized liquid isoprene rubber (E-LqIR) was used as a processing aid in a silica-filled natural rubber compound to improve the fuel efficiency, abrasion resistance, and oil migration problems of truck and bus radial tire tread. The wear resistance, fuel efficiency, and extraction resistance of the compound were evaluated according to the molecular weight of E-LqIR. Results of the evaluation showed that the E-LqIR compound had a lower chemical crosslink density than that of a treated distillate aromatic extract (TDAE) oil compound because of the sulfur consumption of E-LqIR. However, the filler-rubber interaction improved because of the reaction of E-LqIR with silica and crosslink with the base rubber by sulfur. As the molecular weight of E-LqIR increased, crosslink with sulfur was facilitated, and the filler-rubber interaction improved, resulting in improved abrasion resistance. The fuel efficiency performance of the E-LqIR compound was poorer than that of the TDAE oil compound because of the low chemical crosslink density and hysteresis loss at the free chain end of E-LqIR. However, the fuel efficiency performance improved as the molecular weight of E-LqIR increased.

Continuous Wet Oxidation of TCE over Supported Metal Oxide Catalysts (금속산화물 담지촉매상에서 연속 습식 TCE 분해반응)

  • Kim, Moon Hyeon;Choo, Kwang-Ho
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.206-214
    • /
    • 2005
  • Heterogeneously-catalyzed oxidation of aqueous phase trichloroethylene (TCE) over supported metal oxides has been conducted to establish an approach to eliminate ppm levels of organic compounds in water. A continuous flow reactor system was designed to effect predominant reaction parameters in determining catalytic activity of the catalysts for wet TCE decomposition as a model reaction. 5 wt.% $CoO_x/TiO_2$ catalyst exhibited a transient period in activity vs. on-stream time behavior, suggesting that the surface structure of the $CoO_x$ might be altered with on-stream hours; regardless, it is probable to be the most promising catalyst. Not only could the bare support be inactive for the wet decomposition reaction at $36^{\circ}C$, but no TCE removal also occurred by the process of adsorption on $TiO_2$ surface. The catalytic activity was independent of all particle sizes used, thereby representing no mass transfer limitation in intraparticle diffusion. Very low TCE conversion appeared for $TiO_2$-supported $NiO_x$ and $CrO_x$ catalysts. Wet oxidation performance of supported Cu and Fe catalysts, obtained through an incipient wetness and ion exchange technique, was dependent primarily on the kinds of the metal oxides, in addition to the acidic solid supports and the preparation routes. 5 wt.% $FeO_x/TiO_2$ catalyst gave no activity in the oxidation reaction at $36^{\circ}C$, while 1.2 wt.% Fe-MFI was active for the wet decomposition depending on time on-stream. The noticeable difference in activity of the both catalysts suggests that the Fe oxidation states involved to catalytic redox cycle during the course of reaction play a significant role in catalyzing the wet decomposition as well as in maintaining the time on-stream activity. Based on the results of different $CoO_x$ loadings and reaction temperatures for the decomposition reaction at $36^{\circ}C$ with $CoO_x/TiO_2$, the catalyst possessed an optimal $CoO_x$ amount at which higher reaction temperatures facilitated the catalytic TCE conversion. Small amounts of the active ingredient could be dissolved by acidic leaching but such a process gave no appreciable activity loss of the $CoO_x$ catalyst.

Comparison of Pretreatment Method for the Enhancement of CO2 Mineralogied Sequestration using by Serpentine (이산화탄소 광물고정화 효율 증진을 위한 사문석의 전처리 방법의 비교)

  • Jang, Na-Hyung;Park, Sung-Kwon;Shim, Hyun-Min;Kim, Hyung-Taek
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.24-28
    • /
    • 2010
  • Since the reaction of mineral fixation proceeds with a very slow rate, the pretreatment method to increases the rate of carbonation reaction should be required. To increase the reactivity of serpentine with $CO_{2}$, two pretreatment methods are performed in this study. The heat treatment is done at $630^{\circ}C$. A heat-treated serpentine shows that the strength of -OH has a lower peak in FT-IR spectrum. Chemical pretreatment is the method of leaching of magnesium from serpentine using sulfuric acid at $75^{\circ}C$ for 1 h. Because the protonation of the oxygen atoms polarizes and weakens the Mg-O-Si bond, the removal of magnesium atoms from the crystal lattice was facilitated. After performing the pre-treatment of serpentine, $CO_{2}$ fixation experiments are performed with treated serpentine in the batch reactor. Heat-treated serpentine is converted into 43% magnesite conversion, whereas untreated serpentine has 27% of magnesite conversion. Although the results of the heat-pretreatment are encouraging, this method is prohibited due to excessive energy consumption. Furthermore chemical pretreatment serpentine routes have been proposed in an effort to avoid the cost prohibitive heat pretreatment, in which the carbonation reaction was conducted at 45 atm and $25^{\circ}C$. Chemical-treated serpentine, in particularly is corresponded to a conversion of 42% of magnesite compared to 24% for the un-treated serpentine.

Enhanced Catalytic Activity of Cu/Zn Catalyst by Ce Addition for Low Temperature Water Gas Shift Reaction (Ce 첨가에 따른 저온수성가스전이반응용 Cu/Zn 촉매의 활성 연구)

  • Byun, Chang Ki;Im, Hyo Bin;Park, Jihye;Baek, Jeonghun;Jeong, Jeongmin;Yoon, Wang Ria;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.21 no.3
    • /
    • pp.200-206
    • /
    • 2015
  • In order to investigate the effect of cerium oxide addition, Cu-ZnO-CeO2 catalysts were prepared using co-precipitation method for water gas shift (WGS) reaction. A series of Cu-ZnO-CeO2 catalyst with fixed Cu Content (50 wt%, calculated as CuO) and a given ceria content (e.g., 0, 5, 10, 20, 30, 40 wt%, calculated as CeO2) were tested for catalytic activity at a GHSV of 95,541 h-1, and a temperature range of 200 to 400 ℃. Cu-ZnO-CeO2 catalysts were characterized by using BET, SEM, XRD, H2-TPR, and XPS analysis. Varying composition of Cu-ZnO-CeO2 catlysts led the difference characteristics such as Cu dispersion, and binding energy. The optimum 10 wt% doping of cerium facilitated catalyst reduction at lower temperature and improved the catalyst performance greatly in terms of CO conversion. Cerium oxide added catalyst showed enhanced activities at higher temperature when it compared with the catalyst without cerium oxide. Consequently, ceria addition of optimal composition leads to enhanced catalytic activity which is attributed to enhanced Cu dispersion, lower binding energy, and hindered Cu metal agglomeration.