• 제목/요약/키워드: facilitated reaction

검색결과 86건 처리시간 0.024초

신남산 유도체 VI. Cinnamenylisophorone 유도체에 대한 Thiourea의 친핵성 첨가반응메카니즘과 그 반응속도론적 연구 (Cinnamic Acid Derivatives VI, The Kinetics and Mechanism of the Nucleophilic Addition of Thiourea to Cinnamenylisophorone Derivatives)

  • 정덕채;이기창;황용현;류정욱;윤철훈
    • 한국응용과학기술학회지
    • /
    • 제10권2호
    • /
    • pp.65-72
    • /
    • 1993
  • The kinetics of the addition of thiourea to cinnamenylisophorone derivatives(X : H, p-Br, $p-CH_3$ $m-CH_3$, $p-OCH_3$) was investigated using ultraviolet spectrophotometry in 20%(v/v) dioxane-$H_2O$ at $25^{\circ}C$. A rate equation which can be applied over wide pH range(pH $1.0{\sim}13.0$) was obtained. In order to investigate the substituent effects of cinnamenylisophorone derivatives. Hammett constant was plotted. As the result, the rate of uncleophilic addition of thiourea to cinnamenylisophorone derivatives was facilitated by electron donating group. It was found that addition of neutral thiourea which was not dissociated at the pH $1.0{\sim}9.0$ was proceeded, the reaction was proceeded by addition of dissociated anion of thiourea above the pH 10.0. On the basis of this kinetic study, the reaction mechanism of nucleophilic addition of thiourea was investigated.

Thienyl Chalcone 유도체의 가수분해 반응메카니즘과 그 반응속도론적 연구 (The Kinetics and Mechanism of the Hydrolysis to Thienyl Chalcone Derivatives)

  • 황용현;이기창;김진영
    • 한국응용과학기술학회지
    • /
    • 제10권2호
    • /
    • pp.73-80
    • /
    • 1993
  • The hydrolysis reaction kinetics of 2-thienyl chalcone derivatives $[II]{\sim}[V]$ was investigated by ultraviolet spectrophotometery in 20% dioxane-$H_2O$ at $25^{\circ}C$ and the structure of these compounds were ascertained by means of ultraviolet, infrared and NMR spectra. The rate equations which were applied over a wide pH range(pH $1.0{\sim}13.0$) were obtained. The substituent effects on 2-thienyl chalcone derivatives$[II]{\sim}[V]$ were studied, and the hydrolysis were facilitated by electron attracting groups. On the basis of the rate equation, substitutent effect and final product, the plausible hydrolysis reaction mechanism was proposed : At pH $1.0{\sim}9.0$, not relevant to the hydrogen ion concentration, neutral $H_2O$ molecule competitvely attacked on the double bond. By contraries, above pH 9.0, it was proportional to concentration of hydroxide ion.

Separation and Concentration of L-Phenylalanine using a Supported Liquid Membrane

  • Jeong Woo Choi;Kyu
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제3권1호
    • /
    • pp.24-31
    • /
    • 1998
  • The separation and concentration of L-phenylalanine (L-Phe) using a supported liquid membrane (SLM) is investigated. A cation complex agent, di-2-ethylhexyl phosphoric acid (D2EHPA), is used as a carrier in the SLM with n-Heptane as a solvent. The reaction order and equilibrium constant in the formation reaction of L-phe-carrier complex are obtained from the extraction experiment. A mathematical model for a carrier mediated counter transport process is proposed to estimate the diffusion coefficient of L-phe-carrier complexly in the liquid membrant. Permeation experiments of L-phe using a SLM are performed under various operating conditions and optimum conditions for the transport of L-phe are obtained. Concentration of L-phe in the strip phase against its concentration is observed. Transport rate of glucose through liquid membrane is less than that of L-phe in the competitive transport of L-phe and glucose. And the existence of glucose reduced the transport rate of L-phe. The performance of separation with continuous strip phase is increased due to the dilution effect in the strip phase.

  • PDF

A Reliable Reverse Transcription Loop-Mediated Isothermal Amplification Assay for Detecting Apple stem grooving virus in Pear

  • Lee, Hyo-Jeong;Jeong, Rae-Dong
    • 식물병연구
    • /
    • 제28권2호
    • /
    • pp.92-97
    • /
    • 2022
  • Apple stem grooving virus (ASGV) is a high-risk viral pathogen that infects many types of fruit trees, especially pear and apple, and causes serious economic losses across the globe. Thus, rapid and reliable detection assay is needed to identify ASGV infection and prevent its spread. A reliable reverse transcription loop-mediated isothermal amplification (RT-LAMP) was developed, optimize, and evaluated for the coding region of coat protein of ASGV in pear leaf. The developed RT-LAMP facilitated the simple screening of ASGV using visible fluorescence and electrophoresis. The optimized reaction conditions for the RT-LAMP were 63℃ for 50 min, and the results showed high specificity and 100-fold greater sensitivity than the reverse transcription polymerase chain reaction. In addition, the reliability of the RT-LAMP was validated using field-collected pear leaves. Furthermore, the potential application of paper-based RNA isolation, combined with RT-LAMP, was also evaluated for detecting ASGV from field-collected samples. These assays could be widely applied to ASGV detection in field conditions and to virus-free certification programs.

Metal effects in Mn-Na2WO4/SiO2 upon the conversion of methane to higher hydrocarbons

  • Tang, Liangguang;Choi, Jonghyun;Lee, Woo Jin;Patel, Jim;Chiang, Ken
    • Advances in Energy Research
    • /
    • 제5권1호
    • /
    • pp.13-29
    • /
    • 2017
  • The roles of Na, Mn, W and silica, and the synergistic effects between each metal in the $MnNa_2WO_4/SiO_2$ catalyst have been investigated for oxidative coupling of methane (OCM). The crystallisation of amorphous silica during calcination at $900^{\circ}C$ was promoted primarily by Na, but Mn and W also facilitated this process. The interaction between Na and Mn tended to increase the extent of conversion of $Mn_3O_4$ to $Mn_2O_3$. The formation of $Na_2WO_4$ was dependent on the order in which Na and W were introduced to the catalyst. The impregnation of W before Na resulted in the formation of $Na_2WO_4$, but this did not occur when the impregnation order was reversed. $MnWO_4$ formed in all cases where Mn and W were introduced into the silica support, regardless of the impregnation order; however, the formation of $MnWO_4$ was inhibited in the presence of Na. Of the prepared samples in which a single metal oxide was introduced to silica, only $Mn/SiO_2$ showed OCM activity with significant oxygen conversion, thus demonstrating the important role that Mn plays in promoting oxygen transfer in the reaction. The impregnation order of W and Na is critical for catalyst performance. The active site, which involves a combination of Na-Si-W-O, can be formed in situ when distorted $WO_4^{2-}$ interacts with silica during the crystallisation process facilitated by Na. This can only occur if the impregnation of W occurs before Na addition, or if the two components are introduced simultaneously.

Hydrogels with diffusion-facilitated porous network for improved adsorption performance

  • Pei, Yan-yan;Guo, Dong-mei;An, Qing-da;Xiao, Zuo-yi;Zhai, Shang-ru;Zhai, Bin
    • Korean Journal of Chemical Engineering
    • /
    • 제35권12호
    • /
    • pp.2384-2393
    • /
    • 2018
  • Porous alginate-based hydrogel beads (porous ABH) have been prepared through a facile and sustainable template-assisted method using nano-calcium carbonate and nano-$CaCO_3$ as pore-directing agent for the efficient capture of methylene blue (MB). The materials were characterized by various techniques. The sorption capacities of ABH towards MB were compared with pure sodium alginate (ABH-1:0) in batch and fixed-bed column adsorption studies. The obtained adsorbent (ABH-1:3) has a higher BET surface area and a smaller average pore diameter. The maximum adsorption capacity of ABH-1:3 obtained from Langmuir model was as high as $1,426.0mg\;g^{-1}$. The kinetics strictly followed pseudo-second order rate equation and the adsorption reaction was effectively facilitated, approximately 50 minutes to achieve adsorption equilibrium, which was significantly shorter than that of ABH-1:0. The thermodynamic parameters revealed that the adsorption was spontaneous and exothermic. Thomas model fitted well with the breakthrough curves and could describe the dynamic behavior of the column. More significantly, the uptake capacity of ABH-1:3 was still higher than 75% of the maximum adsorption capacity even after ten cycles, indicating that this novel adsorbent can be a promising adsorptive material for removal of MB from aqueous solution under batch and continuous systems.

Peptide C-terminal Sequence Analysis by MALDI-TOF MS Utilizing EDC Coupling with Br Signature

  • Shin, Man-Sup;Kim, Hie-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권4호
    • /
    • pp.1183-1186
    • /
    • 2011
  • The unique Br signature was utilized for C-terminal amino acid sequencing of model peptides. C-terminal carboxyl group was selectively derivatized in peptides, containing side chain carboxyl group, using 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) and Br was introduced using 4-bromophenylhydrazine hydrochloride (BPH) in a one pot reaction. Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) tandem mass spectra were obtained carrying the Br signature in the y-series ions. The Br signature facilitated C-terminal sequencing and discrimination of C-terminal carboxyl groups in the free acid and amide forms.

광화제 첨가가 포틀랜드 시멘트의 Tricalcium Silicate 생성에 미치는 영향 (Effects of Mineralizer Addition on the Formation of Tricalcium Silicate in Portland Cement)

  • 김인태;이창봉;김윤호
    • 한국세라믹학회지
    • /
    • 제31권12호
    • /
    • pp.1417-1422
    • /
    • 1994
  • Effect of MgO, CaSO4, and CaF2 addition on the formation of clinker minerals in portland cement have been investigated by measuring the amounts of free-CaO and C3S in the fired specimens and analyzing the Mg and S concentration in C3S and C2S. It was found that CaSO4 inhibited C3S formation but MgO addition offset this effect of CaSO4. MgO addition also enhanced the mineralizing effect of CaSO4+CaF2, resulting in the acceleration of C3S formation. It was suggested that Mg might inhibit the formation of sulphate compounds rim around C2S and thus C2S+CaOlongrightarrowC3S reaction was facilitated.

  • PDF

Simultaneous Biocatalytic Synthesis of Panose During Lactate Fermentation in Kimchi

  • Han, Nam-Soo;Jung, Yoon-Seung;Eom, Hyun-Ju;Koh, Young-Ho;Robyt, John F.;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권1호
    • /
    • pp.46-52
    • /
    • 2002
  • As a functional additive for intestinal microflora, panose ($6^2-{\alpha}$-D-glucopyranosylmaltose) was synthesized during kimchi fermentation using the glucose transferring reaction of glucansucrase from Leuconostoc mesenteroides. For the glucose transferring reaction, sucrose and maltose were added ($2\%$ each, w/v) to dongchimi-kimchi as the glucosyl donor and acceptor molecule, respectively. After five days of incubation at $10^{\circ}C$, referring to the initial phase for the production of lactic acid in kimchi, over $60\%$ (w/v) of the total sugars were converted into panose and other branched oligosaccharides. Thereafter, the kimchi was stored at $4^{\circ}C$ and the amount of panose remained at a constant level for three weeks, thereby indicating the stability of panose to microbial degradation during the period of kimchi consumption. The use of maltose as the acceptor molecule in the kimchi also facilitated a lower viscosity in the kimchi-juice by preventing the synthesis of a dextran-like polymer which caused an unfavorable taste. Accordingly, the application of this new method of simultaneous biocatalytic synthesis of oligosaccharides during lactate fermentation should facilitate the extensive development of new function-added lactate foods.

신남산 유도체 V. Cinnamenylisophorone 유도체의 가수분해 반응에 대한 메카니즘과 그 반응속도론적 연구 (Cinnamic Acid Derivatives V. the Kinetics and Mechanism of the Hydrolysis of Cinnamenylisophorone Derivatives)

  • 이기창;윤철훈;류정욱;이석우;정덕채
    • 한국응용과학기술학회지
    • /
    • 제8권2호
    • /
    • pp.161-167
    • /
    • 1991
  • The kinetics of hydrolysis of cinnamenylisophorone derivatives (${rho}-H,\;{rho}-Br,\;P-Cl,\;{rho}-OCH_3$) was investigated using ultraviolet spectrophotometry in 20%(v/v) dicxane-$H_2O$ at 25$^{\circ}C$. A rate equation which can be applied over wide pH range (pH $1.0{\sim}13.0$) was obtained. In order to investigate the substituent effects on cinnarnenylisophorone derivatives, Hammett constant was plotted. As the result, the rate of hydrolysis of cinnamenylisophorone derivatives was facilitated by electron donating group. Final products of the hydrolysis were benzaldehyde and isophorone, From the measurement of reaction rate constant according to pH changes, substituent effect, and final products, it was found that the hydrolysis of cinnarnenylisophorone derivatives was initiated by the neutral $H_2O$ molecule which does not dissociated at below pH 9.0, and in the range of pH $9.0{\sim}11.0$ this reaction occurs by $H_2O$ or hydroxide ion competitively, but proceeded by the hydroxide ion above pH 11.0. On the basis of this kinetic study, the reaction mechanism of the hydrolysis of cinnamenylisophorone derivatives was proposed.