Automatically recognizing facial expressions in video sequences is a challenging task because there is little direct correlation between facial features and subjective emotions in video. To overcome the problem, a video facial expression recognition method using spatiotemporal recurrent neural network and feature fusion is proposed. Firstly, the video is preprocessed. Then, the double-layer cascade structure is used to detect a face in a video image. In addition, two deep convolutional neural networks are used to extract the time-domain and airspace facial features in the video. The spatial convolutional neural network is used to extract the spatial information features from each frame of the static expression images in the video. The temporal convolutional neural network is used to extract the dynamic information features from the optical flow information from multiple frames of expression images in the video. A multiplication fusion is performed with the spatiotemporal features learned by the two deep convolutional neural networks. Finally, the fused features are input to the support vector machine to realize the facial expression classification task. The experimental results on cNTERFACE, RML, and AFEW6.0 datasets show that the recognition rates obtained by the proposed method are as high as 88.67%, 70.32%, and 63.84%, respectively. Comparative experiments show that the proposed method obtains higher recognition accuracy than other recently reported methods.
이동기기를 기반으로 하는 기술이 급격히 발달함에 따라 일반 컴퓨팅 환경의 그래픽이나 영상처리 기술들을 활용한 모바일 컨텐츠 개발이 증가하고 있다. 본 논문에서는 상호 연동성을 지원하는 국내 표준 무선인터넷 플랫폼인 WIPI를 기반으로 하여 영상처리와 얼굴인식 기술을 응용한 얼굴탐지 및 인식 지원 미들웨어를 설계하였다. 생성된 얼굴인식 미들웨어는 휴대폰 카메라를 이용한 인식보안 및 다양한 컨텐츠로 활용될 수 있도록 객체지향 개념을 도입해 각각의 미들웨어가 얼굴인식 미들웨어를 공유할 수 있다. 이는 컨텐츠 설계에 있어 주요 프로세스를 분리함으로써 컨텐츠의 개발 기간 및 비용을 단축시킬 수 있으며, 컨텐츠 보호 및 타 기업과의 기술이전에 적용될 수 있다. 얼굴인식 미들웨어는 서비스에 따라 얼굴탐지 모듈과 얼굴인식 모듈로 구성되며, WIPI 플랫폼 상에서의 얼굴인식 미들웨어 응용 컨텐츠 설계 방법에 대하여 제시한다.
본 논문에서는 자동으로 사용자의 얼굴 표정을 인식할 수 있는 시스템을 제안한다. 제안된 시스템은 휴리스틱 정보를 기반으로 설계된 트리 구조를 이용하여 행복, 역겨움, 놀람의 감정과 무표정을 인식한다. 카메라로부터 영상이 들어오면 먼저 얼굴 특징 검출기에서 피부색 모델과 연결성분 분석을 이용하여 얼굴 영역을 획득한다. 그 후에 신경망 기반의 텍스처 분류기를 사용하여 눈 영역과 비 눈 영역으로 구분한 뒤 눈의 중심 영역과 에지 정보를 기반으로 하여 눈, 눈썹, 입 등의 얼굴 특징을 찾는다. 검출된 얼굴 특징들은 얼굴 표정 인식기에 사용되며 얼굴 인식기는 이를 기반으로 한 decision tree를 이용하여 얼굴 감정을 인식한다. 제안된 방법의 성능을 평가하기 위해 MMI JAFFE, VAK DB에서 총 180장의 이미지를 사용하여 테스트하였고 약 93%의 정확도를 보였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권9호
/
pp.4549-4566
/
2017
This work presents a novel facial descriptor, which is named as multiscale adaptive local directional texture pattern (MALDTP) and employed for expression recognition. We apply an adaptive threshold value to encode facial image in different scales, and concatenate a series of histograms based on the MALDTP to generate facial descriptor in term of Gabor filters. In addition, some dedicated experiments were conducted to evaluate the performance of the MALDTP method in a person-independent way. The experimental results demonstrate that our proposed method achieves higher recognition rate than local directional texture pattern (LDTP). Moreover, the MALDTP method has lower computational complexity, fewer storage space and higher classification accuracy than local Gabor binary pattern histogram sequence (LGBPHS) method. In a nutshell, the proposed MALDTP method can not only avoid choosing the threshold by experience but also contain much more structural and contrast information of facial image than LDTP.
본 논문에서는 얼굴영상에 나타난 사람의 표정을 인식하기 위해 얼굴검출, 얼굴정렬, 얼굴단위 추출, 그리고 AdaBoost를 이용한 학습 방법과 효과적인 인식방법을 제안한다. 입력영상에서 얼굴 영역을 찾기 위해서 얼굴검출을 수행하고, 검출된 얼굴영상에 대하여 학습된 얼굴모델과 정렬(Face Alignment)을 수행한 후, 얼굴의 표정을 나타내는 단위요소(Facial Units)들을 추출한다. 본 논문에서 제안하는 얼굴 단위요소들을 표정을 표현하기 위한 기본적인 액션유닛(AU, Action Units)의 하위집합으로 눈썹, 눈, 코, 입 부분으로 나눠지며, 이러한 액션유닛에 대하여 AdaBoost 학습을 수행하여 표정을 인식한다. 얼굴유닛은 얼굴표정을 더욱 효율적으로 표현할 수 있고 학습 및 테스트에서 동작하는 시간을 줄여주기 때문에 실시간 응용분야에 적용하기 적합하다. 실험결과, 제안하는 표정인식 시스템은 실시간 환경에서 90% 이상의 우수한 성능을 보여준다.
얼굴 표정인식 기술은 다른 감정인식기술에 비해 비접촉성, 비강제성, 편리성의 특징을 가지고 있다. 비전 기술을 심리로봇에 적용하기 위해서는 표정인식을 하기 전 단계에서 얼굴 영역을 정확하고 빠르게 추출할 수 있어야 한다. 본 논문에서는 성능이 향상된 얼굴영역 검출을 위해서 먼저 영상에서 YCbCr 피부색 색상 정보를 이용하여 배경을 제거하고 상태 기반 방법인 Haar-like Feature 방법을 이용하였다. 입력영상에 대하여 배경을 제거함으로써 처리속도가 향상된, 배경에 강건한 얼굴검출 결과를 얻을 수 있었다.
Biometric authentication has become an essential part of modern-day security systems, especially in financial institutions like banks. A face recognition-based ATM is a biometric authentication system, that uses facial recognition technology to verify the identity of bank account holders during ATM transactions. This technology offers a secure and convenient alternative to traditional ATM transactions that rely on PIN numbers for verification. The proposed system captures users' pictures and compares it with the stored image in the bank's database to authenticate the transaction. The technology also offers additional benefits such as reducing the risk of fraud and theft, as well as speeding up the transaction process. However, privacy and data security concerns remain, and it is important for the banking sector to instrument solid security actions to protect customers' personal information. The proposed system consists of two stages: the first stage captures the user's facial image using a camera and performs pre-processing, including face detection and alignment. In the second stage, machine learning algorithms compare the pre-processed image with the stored image in the database. The results demonstrate the feasibility and effectiveness of using face recognition for ATM authentication, which can enhance the security of ATMs and reduce the risk of fraud.
B2C(Business to Customer) 산업에 있어 효율적인 성과관리를 위해서는 고객이 원하는 서비스 요소를 추론하여 고객이 원하는 서비스를 제공하고 그 결과를 평가하여 지속적으로 서비스품질 및 성과를 향상 할 수 있도록 해야 한다. 그것을 위한 중요한 요소는 고객 만족도의 정확한 피드백인데 현재 국내에는 고객의 만족도 측정에 대한 정량적이고 표준화된 시스템이 열악한 상황이다. 최근 얼굴표정 및 생체데이터를 감지하여 사람의 감정을 인식하는 휴대폰 및 관련서비스 기술에 관한 연구가 증가하고 있다. 얼굴에서의 감정인식은 현재 연구되어지는 여러 가지 감정인식 중에서 효율적이고 자연스러운 휴먼 인터페이스로 기대되고 있다. 본 연구에서는 효율적인 얼굴감정 인식에 대한 분석을 하고 고객의 얼굴감정인식을 이용하여 고객의 만족도를 추론할 수 있는 고객피드백시스템을 제안한다.
Face detection and tracking technology on video sequence has developed indebted to commercialization of teleconference, telecommunication, front stage of surveillance system using face recognition, and video-phone applications. Complex background, color distortion by luminance effect and condition of luminance has hindered face recognition system. In this paper, we have proceeded to research of face recognition on video sequence. We extracted facial area using luminance and chrominance component on $YC_bC_r$ color space. After extracting facial area, we have developed the face recognition system applied to our improved algorithm that combined PCA and LDA. Our proposed algorithm has shown 92% recognition rate which is more accurate performance than previous methods that are applied to PCA, or combined PCA and LDA.
Journal of the Korean Association of Oral and Maxillofacial Surgeons
/
제48권4호
/
pp.201-206
/
2022
Objectives: Contemporary biometric technologies have been gaining traction in both public and private security sectors. Facial recognition is the most commonly used biometric technology for this purpose. We aimed to evaluate the ability of a publicly available facial recognition application program interface to calculate similarity scores of presurgical and postsurgical photographs of patients who had orthognathic surgery. Materials and Methods: Presurgical and postsurgical photographs of 75 patients who had orthognathic surgery between January 2018 and November 2020 in our department were used. Frontal photographs of patients in relaxed and smiling states were taken. The patients were classified into three groups: Group 2 had one-jaw surgery, Group 3 had two-jaw surgery to correct mandibular prognathism, and Group 4 had two-jaw surgery to correct facial asymmetry. For comparison, photographs of 10 participants were used as controls (Group 1). Two facial recognition application programs (Face X and Azure) were used to assess similarity scores. Results: The similarity scores in the two programs showed significant results. The similarity score of the control group, which did not undergo orthognathic surgery, was the highest. The results for Group 2, Group 3, and Group 4 were higher in the order of Group 2, Group 3, and Group 4. Conclusion: In this study, all orthodontic patients were recognized as the same person using the face recognition program before and after surgery. A significant difference in similarity results was obtained between the groups with both Face X and Azure and in both relaxed and smiling states.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.