Emotion recognition between human and human is done compositely using various features that are face, voice, gesture and etc. Among them, it is a face that emotion expression is revealed the most definitely. Human expresses and recognizes a emotion using complex and various features of the face. This paper proposes hybrid feature extraction for emotions recognition from facial expression. Hybrid feature extraction imitates emotion recognition system of human by combination of geometrical feature based extraction and color distributed histogram. That is, it can robustly perform emotion recognition by extracting many features of facial expression.
The existing video expression recognition methods mainly focus on the spatial feature extraction of video expression images, but tend to ignore the dynamic features of video sequences. To solve this problem, a multi-mode convolution neural network method is proposed to effectively improve the performance of facial expression recognition in video. Firstly, OpenFace 2.0 is used to detect face images in video, and two deep convolution neural networks are used to extract spatiotemporal expression features. Furthermore, spatial convolution neural network is used to extract the spatial information features of each static expression image, and the dynamic information feature is extracted from the optical flow information of multiple expression images based on temporal convolution neural network. Then, the spatiotemporal features learned by the two deep convolution neural networks are fused by multiplication. Finally, the fused features are input into support vector machine to realize the facial expression classification. Experimental results show that the recognition accuracy of the proposed method can reach 64.57% and 60.89%, respectively on RML and Baum-ls datasets. It is better than that of other contrast methods.
본 논문에서는 ASM(Active Shape Model) 특징점(Landmark)을 이용하여 정밀한 얼굴영역을 획득하고, 외형기반 접근법으로 표정을 인식하는 방법에 대하여 제안한다. 외형기반 표정인식은 EHMM(Embedded Hidden Markov Model) 및 이진패턴 히스토그램 특징과 SVM(Support Vector Machine)을 사용하는 알고리즘으로 구성되며, 제안 방법의 성능평가는 공인 CK 데이터베이스와 JAFFE 데이터베이스를 이용하여 수행되었다. 더불어, 성능비교는 기존의 눈 거리 기반의 얼굴 정규화 방법과 비교를 통하여 수행되었고, 또한 ASM 전체 특징점 및 변형된 특징을 SVM으로 인식하는 기하학적 표정인식 방법론과 성능비교를 수행하였다. 실험 결과, 제안 방법은 거리기반 얼굴정규화 영상을 사용한 방법보다 CK 데이터베이스 및 JAFFE 데이터베이스 경우, 최대 6.39%와 7.98%의 성능향상을 보였다. 또한, 제안 방법은 기하학적 특징점을 사용한 방법보다 높은 인식 성능을 보였으며, 이로부터 제안하는 표정인식 방법의 효용성을 확인하였다.
본 논문은 내적상태의 차원모형을 기반으로 한 얼굴 표정인식을 위한 새로운 시스템을 제시한다. 얼굴표정 정보는 3단계로 추출된다. 1단계에서는 Gabor 웨이브렛 표상이 얼굴 요소들의 경계선을 추출한다. 2단계에서는 중립얼굴상에서 얼굴표정의 성긴 특징들이 FCM 군집화 알고리즘을 사용하여 추출된다. 3단계에서는 표정영상에서 동적인 모델을 사용하여 성긴 특징들이 추출된다. 마지막으로 다층 퍼셉트론을 사용하여 내적상태의 차원모델에 기반한 얼굴표정 인식을 보인다. 정서의 이차원 구조는 기본 정서와 관련된 얼굴표정의 인식 뿐만 아니라 다양한 정서의 표정들로 인식할 수 있음을 제시한다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권9호
/
pp.4549-4566
/
2017
This work presents a novel facial descriptor, which is named as multiscale adaptive local directional texture pattern (MALDTP) and employed for expression recognition. We apply an adaptive threshold value to encode facial image in different scales, and concatenate a series of histograms based on the MALDTP to generate facial descriptor in term of Gabor filters. In addition, some dedicated experiments were conducted to evaluate the performance of the MALDTP method in a person-independent way. The experimental results demonstrate that our proposed method achieves higher recognition rate than local directional texture pattern (LDTP). Moreover, the MALDTP method has lower computational complexity, fewer storage space and higher classification accuracy than local Gabor binary pattern histogram sequence (LGBPHS) method. In a nutshell, the proposed MALDTP method can not only avoid choosing the threshold by experience but also contain much more structural and contrast information of facial image than LDTP.
Facial expression recognition plays a significant role in understanding human emotional states. With the advancement of AI and computer vision technologies, extensive research has been conducted in various fields, including improving customer service, medical diagnosis, and assessing learners' understanding in education. In this study, we develop a model that can infer emotions in real-time from a webcam using transfer learning with TensorFlow.js and MobileNet. While existing studies focus on achieving high accuracy using deep learning models, these models often require substantial resources due to their complex structure and computational demands. Consequently, there is a growing interest in developing lightweight deep learning models and transfer learning methods for restricted environments such as web browsers and edge devices. By employing MobileNet as the base model and performing transfer learning, our study develops a deep learning transfer model utilizing JavaScript-based TensorFlow.js, which can predict emotions in real-time using facial input from a webcam. This transfer model provides a foundation for implementing facial expression recognition in resource-constrained environments such as web and mobile applications, enabling its application in various industries.
본 논문에서는 자동으로 사용자의 얼굴 표정을 인식할 수 있는 시스템을 제안한다. 제안된 시스템은 휴리스틱 정보를 기반으로 설계된 트리 구조를 이용하여 행복, 역겨움, 놀람의 감정과 무표정을 인식한다. 카메라로부터 영상이 들어오면 먼저 얼굴 특징 검출기에서 피부색 모델과 연결성분 분석을 이용하여 얼굴 영역을 획득한다. 그 후에 신경망 기반의 텍스처 분류기를 사용하여 눈 영역과 비 눈 영역으로 구분한 뒤 눈의 중심 영역과 에지 정보를 기반으로 하여 눈, 눈썹, 입 등의 얼굴 특징을 찾는다. 검출된 얼굴 특징들은 얼굴 표정 인식기에 사용되며 얼굴 인식기는 이를 기반으로 한 decision tree를 이용하여 얼굴 감정을 인식한다. 제안된 방법의 성능을 평가하기 위해 MMI JAFFE, VAK DB에서 총 180장의 이미지를 사용하여 테스트하였고 약 93%의 정확도를 보였다.
본 논문에서는 지역적인 에지의 방향 정보와 반응 크기, 주변 화소와의 밝기값 차이를 LDP 코드에 포함함으로써 얼굴 표정 인식률을 향상시킨다. 기존 LDP 코드를 사용하면 LBP에 비해서 영상의 밝기 변화에 덜 민감하고 잡음에 강한 장점을 가진다. 하지만, 밝기 변화가 없는 매끄러운 영역의 정보를 표현하기 어렵고, 배경에 얼굴과 유사한 에지 패턴이 존재하는 경우에는 인식률이 저하되는 문제점이 있다. 따라서 에지 방향 정보를 기반으로 에지 강도 및 밝기값을 추가할 수 있도록 LDP 코드를 개선하고, 인식률을 측정한다.
본 논문은 실시간 카메라 영상으로부터 얼굴을 검출하고 얼굴 표정을 인식하여 웃음 치료훈련을 할 수 있는 시스템을 제안한다. 제안된 시스템은 카메라 영상으로부터 Haar-like 특징을 이용하여 얼굴 후보 영역을 검출한 다음, SVM분류기를 이용하여 얼굴 후보 영역이 얼굴 영상인지 아닌지를 검증한다. 그 다음에는 검출된 얼굴 영상에 대해, 조명의 영향을 최소화하기 위한 방법으로 히스토그램 매칭을 이용한 조명 정규화를 수행한다. 표정 인식 단계에서는 PCA를 사용하여 얼굴 특징 벡터를 획득한 후 다층퍼셉트론 인공신경망을 이용해 실시간으로 웃음표정을 인식하였다. 본 논문에서 개발된 시스템은 실시간으로 사용자의 웃음 표정을 인식하여 웃음 양을 화면에 표시해 줌으로써 사용자 스스로 웃음 훈련을 할 수 있게 해 준다. 실험 결과에 따르면, 본 논문에서 제안한 방법은 SVM 분류기를 통한 얼굴 후보 영역 검증과 히스토그램 매칭을 이용한 조명정규화를 이용하여 웃음 표정 인식률을 향상시켰다.
The present study describes a combination method to recognize the human affective states such as anger, happiness, sadness, or surprise. For this, we extracted emotional features from voice signals and facial expressions, and then trained them to recognize emotional states using hidden Markov model (HMM) and neural network (NN). For voices, we used prosodic parameters such as pitch signals, energy, and their derivatives, which were then trained by HMM for recognition. For facial expressions, on the other hands, we used feature parameters extracted from thermal and visible images, and these feature parameters were then trained by NN for recognition. The recognition rates for the combined parameters obtained from voice and facial expressions showed better performance than any of two isolated sets of parameters. The simulation results were also compared with human questionnaire results.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.