• 제목/요약/키워드: facial expression recognition

검색결과 284건 처리시간 0.025초

표정 인식을 이용한 3D 감정 아바타 생성 및 애니메이션 (3D Emotional Avatar Creation and Animation using Facial Expression Recognition)

  • 조태훈;정중필;최수미
    • 한국멀티미디어학회논문지
    • /
    • 제17권9호
    • /
    • pp.1076-1083
    • /
    • 2014
  • We propose an emotional facial avatar that portrays the user's facial expressions with an emotional emphasis, while achieving visual and behavioral realism. This is achieved by unifying automatic analysis of facial expressions and animation of realistic 3D faces with details such as facial hair and hairstyles. To augment facial appearance according to the user's emotions, we use emotional templates representing typical emotions in an artistic way, which can be easily combined with the skin texture of the 3D face at runtime. Hence, our interface gives the user vision-based control over facial animation of the emotional avatar, easily changing its moods.

저해상도 영상 자료를 사용하는 얼굴 표정 인식을 위한 소규모 심층 합성곱 신경망 모델 설계 (A Design of Small Scale Deep CNN Model for Facial Expression Recognition using the Low Resolution Image Datasets)

  • 살리모프 시로지딘;류재흥
    • 한국전자통신학회논문지
    • /
    • 제16권1호
    • /
    • pp.75-80
    • /
    • 2021
  • 인공 지능은 놀라운 혜택을 제공하는 우리 삶의 중요한 부분이 되고 있다. 이와 관련하여 얼굴 표정 인식은 최근 수십 년 동안 컴퓨터 비전 연구자들 사이에서 뜨거운 주제 중 하나였다. 저해상도 이미지의 작은 데이터 세트를 분류하려면 새로운 소규모 심층 합성곱 신경망 모델을 개발해야 한다. 이를 위해 소규모 데이터 세트에 적합한 방법을 제안한다. 이 모델은 기존 심층 합성곱 신경망 모델에 비해 총 학습 가능 가중치 측면에서 메모리의 일부만 사용하지만 FER2013 및 FERPlus 데이터 세트에서 매우 유사한 결과를 보여준다.

감정노동자를 위한 딥러닝 기반의 스트레스 감지시스템의 설계 (Stress Detection System for Emotional Labor Based On Deep Learning Facial Expression Recognition)

  • 옥유선;조우현
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.613-617
    • /
    • 2021
  • 서비스 산업의 성장과 함께 감정노동자의 스트레스가 사회적 문제로 인식되어 2018년 감정노동자 보호법이 시행되었다. 그러나 실질적인 감정노동자 보호 시스템의 부족으로 스트레스 관리를 위한 디지털 시스템이 필요한 시점이다. 본 논문에서는 대표적인 감정노동자인 고객 상담사를 위한 딥러닝 기반 스트레스 감지 시스템을 제안한다. 시스템은 실시간 얼굴검출 모듈, 한국인 감정 이미지 중심의 이미지 빅데이터를 딥러닝한 감정분류 FER 모듈, 마지막으로 스트레스 수치만을 시각화하는 모니터링 모듈로 구성된다. 이 시스템을 통하여 감정노동자의 스트레스 모니터링과 정신질환 예방을 목표로 설계하였다.

  • PDF

FGW-FER: Lightweight Facial Expression Recognition with Attention

  • Huy-Hoang Dinh;Hong-Quan Do;Trung-Tung Doan;Cuong Le;Ngo Xuan Bach;Tu Minh Phuong;Viet-Vu Vu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권9호
    • /
    • pp.2505-2528
    • /
    • 2023
  • The field of facial expression recognition (FER) has been actively researched to improve human-computer interaction. In recent years, deep learning techniques have gained popularity for addressing FER, with numerous studies proposing end-to-end frameworks that stack or widen significant convolutional neural network layers. While this has led to improved performance, it has also resulted in larger model sizes and longer inference times. To overcome this challenge, our work introduces a novel lightweight model architecture. The architecture incorporates three key factors: Depth-wise Separable Convolution, Residual Block, and Attention Modules. By doing so, we aim to strike a balance between model size, inference speed, and accuracy in FER tasks. Through extensive experimentation on popular benchmark FER datasets, our proposed method has demonstrated promising results. Notably, it stands out due to its substantial reduction in parameter count and faster inference time, while maintaining accuracy levels comparable to other lightweight models discussed in the existing literature.

Facial Expression Classification Using Deep Convolutional Neural Network

  • Choi, In-kyu;Ahn, Ha-eun;Yoo, Jisang
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.485-492
    • /
    • 2018
  • In this paper, we propose facial expression recognition using CNN (Convolutional Neural Network), one of the deep learning technologies. The proposed structure has general classification performance for any environment or subject. For this purpose, we collect a variety of databases and organize the database into six expression classes such as 'expressionless', 'happy', 'sad', 'angry', 'surprised' and 'disgusted'. Pre-processing and data augmentation techniques are applied to improve training efficiency and classification performance. In the existing CNN structure, the optimal structure that best expresses the features of six facial expressions is found by adjusting the number of feature maps of the convolutional layer and the number of nodes of fully-connected layer. The experimental results show good classification performance compared to the state-of-the-arts in experiments of the cross validation and the cross database. Also, compared to other conventional models, it is confirmed that the proposed structure is superior in classification performance with less execution time.

FCM 군집화 알고리즘에 의한 얼굴의 특징점에서 Gabor 웨이브렛을 이용한 복원 (Reconstruction from Feature Points of Face through Fuzzy C-Means Clustering Algorithm with Gabor Wavelets)

  • 신영숙;이수용;이일병;정찬섭
    • 인지과학
    • /
    • 제11권2호
    • /
    • pp.53-58
    • /
    • 2000
  • 본 논문은 FCM 군집화 알고리즘을 사용하여 표정영상에서 특징점들을 추출한 후 추출된 특징점으로부터 Gabor 웨이브렛들을 이용하여 표정영상의 국소영역을 복원한다. 얼굴의 특징점 추출은 두단계로 이루어진다. 1단계는 이차원 Gabor 웨이브렛 계수 히스토그램의 평균값을 적용하여 얼굴의 주요 요소성분들의 경계선을 추출한 후, 2단계에서는 추출된 경계선 정보로부터 FCM 군집화 알고리즘을 사용하여 얼굴의 주요 요소성분들의 최종적인 특징점들을 추출한다. 본 연구에서는 FCM 군집화 알고리즘을 이용하여 추출된 적은 수의 특징점들 만으로도 표정영상의 주요 요소들을 복원할 수 있음을 제시한다. 이것은 인간의 얼굴 표정인식 뿐만아니라 물체인식에도 적용되어질 수 있다.

  • PDF

주의력결핍 과잉행동장애 아동에서 감정인식능력 및 충동성이 공격성에 미치는 영향 (The Effect of Impulsivity and the Ability to Recognize Facial Emotion on the Aggressiveness of Children with Attention-Deficit Hyperactivity Disorder)

  • 배승민;신동원;이수정
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • 제20권1호
    • /
    • pp.17-22
    • /
    • 2009
  • Objectives : A higher level of aggression has been reported for children with attention-deficit/hyperactivity disorder (ADHD) than for non-ADHD children. Aggression was shown to have a negative effect on the social functioning of children with ADHD. The ability to recognize facial emotion expression has also been related to aggression. In this study, we examined whether impulsivity and dysfunctional recognition of facial emotion expression could explain the aggressiveness of children with ADHD. Methods : 67 children with ADHD participated in this study. We measured the ability to recognize facial emotion expression by using the Emotion Recognition Test (ERT) and we measured aggression by the T score of the aggression subscale of the Child Behavior Checklist (CBCL). Impulsivity was measured by the ADHD diagnostic system (ADS). Results : The teacher rated level of aggression was related to the score of recognizing negative affect. After controlling for the effect of impulsivity, this relationship is not significant. Only the score of the visual commission errors ex plained the level of aggression of children with ADHD. Conclusion : Impulsivity seems to have a major role in explaining the aggression of children with ADHD. The clinical implication of this study is that effective intervention for controlling impulsivity may be expected to reduce the aggression of children with ADHD.

  • PDF

다중 센서 융합 알고리즘을 이용한 사용자의 감정 인식 및 표현 시스템 (Emotion Recognition and Expression System of User using Multi-Modal Sensor Fusion Algorithm)

  • 염홍기;주종태;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제18권1호
    • /
    • pp.20-26
    • /
    • 2008
  • 지능형 로봇이나 컴퓨터가 일상생활 속에서 차지하는 비중이 점점 높아짐에 따라 인간과의 상호교류도 점점 중요시되고 있다. 이렇게 지능형 로봇(컴퓨터) - 인간의 상호 교류하는데 있어서 감정 인식 및 표현은 필수라 할 수 있겠다. 본 논문에서는 음성 신호와 얼굴 영상에서 감정적인 특징들을 추출한 후 이것을 Bayesian Learning과 Principal Component Analysis에 적용하여 5가지 감정(평활, 기쁨, 슬픔, 화남, 놀람)으로 패턴을 분류하였다. 그리고 각각 매개체의 단점을 보완하고 인식률을 높이기 위해서 결정 융합 방법과 특징 융합 방법을 적용하여 감정 인식 실험을 하였다. 결정 융합 방법은 각각 인식 시스템을 통해 얻어진 인식 결과 값을 퍼지 소속 함수에 적용하여 감정 인식 실험을 하였으며, 특징 융합 방법은 SFS(Sequential Forward Selection) 특징 선택 방법을 통해 우수한 특징들을 선택한 후 MLP(Multi Layer Perceptron) 기반 신경망(Neural Networks)에 적용하여 감정 인식 실험을 실행하였다. 그리고 인식된 결과 값을 2D 얼굴 형태에 적용하여 감정을 표현하였다.

지체장애인의 운동참여와 심박변이도(HRV), 표정정서인식력과의 관계 (The Relationship between Physically Disability Persons Participation in Exercise, Heart Rate Variance, and Facial Expression Recognition)

  • 김동환;백재근
    • 재활복지
    • /
    • 제20권3호
    • /
    • pp.105-124
    • /
    • 2016
  • 본 연구는 지체장애인들의 운동참여와 심박변이도(HRV), 표정정서인식력의 인과관계를 검증하는데 목적이 있다. 이를 위해 목적표집법(purposive sampling)을 이용하여, 장애인 볼링 및 론볼대회에 참여한 참가자와 충남지역의 생활체육 운동 프로그램에 참여하는 지체장애인 139명을 대상으로 하였다. 경기장과 클럽활동 시설에 직접 방문하여 연구목적을 구체적으로 설명을 한 후, 연구 참여에 동의한 대상자에 한해 운동량, 심박변이도(HRV), 표정정서인식력을 측정하였다. 측정된 결과는 SPSS 18.0, Amos 18.0 프로그램을 이용하여 평균 및 표준편차, 상관분석, 구조방정식모형을 분석되었고, 그 결과, 지체장애인들의 운동량은 자율신경계의 교감활성도와 부교감 활성도에 긍정적인 영향을 미치는 것으로 나타났다. 지체장애인들의 운동경력은 LF/HF에 긍정적인 영향을 미치는 것으로 나타났고, 부교감 활성도에는 부정적인 영향을 미치는 것으로 나타났다. 지체장애인의 교감활성도는 기쁨 정서인식력에 긍정적인 영향을 미치는 것으로 나타났으며, 운동량은 슬픔 정서인식력에 부정적인 영향을 미치는 것으로 나타났다. 이러한 연구결과가 지체장애인의 자율신경계와 표정정서인식력에 어떻게 관련성이 있는지 그 메카니즘에 대해 논의되었다.