• 제목/요약/키워드: facial expression recognition

검색결과 284건 처리시간 0.071초

A Multimodal Emotion Recognition Using the Facial Image and Speech Signal

  • Go, Hyoun-Joo;Kim, Yong-Tae;Chun, Myung-Geun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권1호
    • /
    • pp.1-6
    • /
    • 2005
  • In this paper, we propose an emotion recognition method using the facial images and speech signals. Six basic emotions including happiness, sadness, anger, surprise, fear and dislike are investigated. Facia] expression recognition is performed by using the multi-resolution analysis based on the discrete wavelet. Here, we obtain the feature vectors through the ICA(Independent Component Analysis). On the other hand, the emotion recognition from the speech signal method has a structure of performing the recognition algorithm independently for each wavelet subband and the final recognition is obtained from the multi-decision making scheme. After merging the facial and speech emotion recognition results, we obtained better performance than previous ones.

주의력결핍 과잉행동장애의 이환 여부에 따른 얼굴표정 정서 인식의 차이 (Difficulty in Facial Emotion Recognition in Children with ADHD)

  • 안나영;이주영;조선미;정영기;신윤미
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • 제24권2호
    • /
    • pp.83-89
    • /
    • 2013
  • Objectives : It is known that children with attention-deficit hyperactivity disorder (ADHD) experience significant difficulty in recognizing facial emotion, which involves processing of emotional facial expressions rather than speech, compared to children without ADHD. This objective of this study is to investigate the differences in facial emotion recognition between children with ADHD and normal children used as control. Methods : The children for our study were recruited from the Suwon Project, a cohort comprising a non-random convenience sample of 117 nine-year-old ethnic Koreans. The parents of the study participants completed study questionnaires such as the Korean version of Child Behavior Checklist, ADHD Rating Scale, Kiddie-Schedule for Affective Disorders and Schizophrenia-Present and Lifetime Version. Facial Expression Recognition Test of the Emotion Recognition Test was used for the evaluation of facial emotion recognition and ADHD Rating Scale was used for the assessment of ADHD. Results : ADHD children (N=10) were found to have impaired recognition when it comes to Emotional Differentiation and Contextual Understanding compared with normal controls (N=24). We found no statistically significant difference in the recognition of positive facial emotions (happy and surprise) and negative facial emotions (anger, sadness, disgust and fear) between the children with ADHD and normal children. Conclusion : The results of our study suggested that facial emotion recognition may be closely associated with ADHD, after controlling for covariates, although more research is needed.

Emotion Recognition Method Based on Multimodal Sensor Fusion Algorithm

  • Moon, Byung-Hyun;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권2호
    • /
    • pp.105-110
    • /
    • 2008
  • Human being recognizes emotion fusing information of the other speech signal, expression, gesture and bio-signal. Computer needs technologies that being recognized as human do using combined information. In this paper, we recognized five emotions (normal, happiness, anger, surprise, sadness) through speech signal and facial image, and we propose to method that fusing into emotion for emotion recognition result is applying to multimodal method. Speech signal and facial image does emotion recognition using Principal Component Analysis (PCA) method. And multimodal is fusing into emotion result applying fuzzy membership function. With our experiments, our average emotion recognition rate was 63% by using speech signals, and was 53.4% by using facial images. That is, we know that speech signal offers a better emotion recognition rate than the facial image. We proposed decision fusion method using S-type membership function to heighten the emotion recognition rate. Result of emotion recognition through proposed method, average recognized rate is 70.4%. We could know that decision fusion method offers a better emotion recognition rate than the facial image or speech signal.

Design of A Personalized Classifier using Soft Computing Techniques and Its Application to Facial Expression Recognition

  • Kim, Dae-Jin;Zeungnam Bien
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.521-524
    • /
    • 2003
  • In this paper, we propose a design process of 'personalized' classification with soft computing techniques. Based on human's thinking way, a construction methodology for personalized classifier is mentioned. Here, two fuzzy similarity measures and ensemble of classifiers are effectively used. As one of the possible applications, facial expression recognition problem is discussed. The numerical result shows that the proposed method is very useful for on-line learning, reusability of previous knowledge and so on.

  • PDF

표정 분석 프레임워크 (Facial Expression Analysis Framework)

  • 지은미
    • 한국컴퓨터산업학회논문지
    • /
    • 제8권3호
    • /
    • pp.187-196
    • /
    • 2007
  • 사람들은 의식적이든 무의식적이든 표정을 통해 감정을 표현하며 살아간다. 이러한 표정을 인식하려는 시도가 몇 몇 심리학자에 의해 시작되어 과거 10여년동안 컴퓨터 과학자들에게도 관심분야가 되었다. 표정인식은 인간과 컴퓨터의 인터페이스를 기반으로 하는 여러 분야에 응용할 수있는 미래가치가 높은 분야이다. 그러나 많은 연구에도 불구하고 조명변화, 해상도, 고차원의 정보 처리 등의 어려움으로 실용화된 시스템을 찾아보기 힘들다. 본 논문에서는 표정 분석을 위한 기본 프레임워크를 기술하고 각 단계의 필요성과 국외의 연구동향을 기술하였으며 국내의 표정에 관한 연구사례를 분석하였다. 이를 통해 국내에서 표정분석에 기여하고자 하는 연구자들에게 도움이 되기를 기대한다.

  • PDF

Micro-Expression Recognition Base on Optical Flow Features and Improved MobileNetV2

  • Xu, Wei;Zheng, Hao;Yang, Zhongxue;Yang, Yingjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권6호
    • /
    • pp.1981-1995
    • /
    • 2021
  • When a person tries to conceal emotions, real emotions will manifest themselves in the form of micro-expressions. Research on facial micro-expression recognition is still extremely challenging in the field of pattern recognition. This is because it is difficult to implement the best feature extraction method to cope with micro-expressions with small changes and short duration. Most methods are based on hand-crafted features to extract subtle facial movements. In this study, we introduce a method that incorporates optical flow and deep learning. First, we take out the onset frame and the apex frame from each video sequence. Then, the motion features between these two frames are extracted using the optical flow method. Finally, the features are inputted into an improved MobileNetV2 model, where SVM is applied to classify expressions. In order to evaluate the effectiveness of the method, we conduct experiments on the public spontaneous micro-expression database CASME II. Under the condition of applying the leave-one-subject-out cross-validation method, the recognition accuracy rate reaches 53.01%, and the F-score reaches 0.5231. The results show that the proposed method can significantly improve the micro-expression recognition performance.

심리로봇적용을 위한 얼굴 영역 처리 속도 향상 및 강인한 얼굴 검출 방법 (Improving the Processing Speed and Robustness of Face Detection for a Psychological Robot Application)

  • 류정탁;양진모;최영숙;박세현
    • 한국산업정보학회논문지
    • /
    • 제20권2호
    • /
    • pp.57-63
    • /
    • 2015
  • 얼굴 표정인식 기술은 다른 감정인식기술에 비해 비접촉성, 비강제성, 편리성의 특징을 가지고 있다. 비전 기술을 심리로봇에 적용하기 위해서는 표정인식을 하기 전 단계에서 얼굴 영역을 정확하고 빠르게 추출할 수 있어야 한다. 본 논문에서는 성능이 향상된 얼굴영역 검출을 위해서 먼저 영상에서 YCbCr 피부색 색상 정보를 이용하여 배경을 제거하고 상태 기반 방법인 Haar-like Feature 방법을 이용하였다. 입력영상에 대하여 배경을 제거함으로써 처리속도가 향상된, 배경에 강건한 얼굴검출 결과를 얻을 수 있었다.

블록가중치의 최적화를 통해 개선된 LBP기반의 표정인식 (An Improved LBP-based Facial Expression Recognition through Optimization of Block Weights)

  • 박성천;구자영
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권11호
    • /
    • pp.73-79
    • /
    • 2009
  • 본 논문에서는 Local Binary Pattern 히스토그램의 템플릿 매칭을 이용한 얼굴 표정 인식에서 인식률을 높이는 방법을 제안한다. 이 방법에서, 주어진 얼굴 영상은 작은 크기의 블록으로 분할되고 각 블록에서 구해진 LBP 히스토그램은 블록 특징으로 사용된다. 입력 영상에서의 블록 특징과 모델의 해당블록 특징 사이에서 블록 상이도가 계산된다. 주어진 영상과 모델 영상 사이의 영상 상이도는 블록 상이도의 가중 합으로 계산된다. 기존의 방법들에서는 직관에 따른 블록 가중치를 사용하는데 본 논문에서는 블록 가중치를 트레이닝 샘플들로부터 최적화를 통해서 구하는 방법을 제안하고 있다. 실험을 통해서 제안된 방법이 기존의 방법보다 우수함을 보인다.

Audio and Video Bimodal Emotion Recognition in Social Networks Based on Improved AlexNet Network and Attention Mechanism

  • Liu, Min;Tang, Jun
    • Journal of Information Processing Systems
    • /
    • 제17권4호
    • /
    • pp.754-771
    • /
    • 2021
  • In the task of continuous dimension emotion recognition, the parts that highlight the emotional expression are not the same in each mode, and the influences of different modes on the emotional state is also different. Therefore, this paper studies the fusion of the two most important modes in emotional recognition (voice and visual expression), and proposes a two-mode dual-modal emotion recognition method combined with the attention mechanism of the improved AlexNet network. After a simple preprocessing of the audio signal and the video signal, respectively, the first step is to use the prior knowledge to realize the extraction of audio characteristics. Then, facial expression features are extracted by the improved AlexNet network. Finally, the multimodal attention mechanism is used to fuse facial expression features and audio features, and the improved loss function is used to optimize the modal missing problem, so as to improve the robustness of the model and the performance of emotion recognition. The experimental results show that the concordance coefficient of the proposed model in the two dimensions of arousal and valence (concordance correlation coefficient) were 0.729 and 0.718, respectively, which are superior to several comparative algorithms.

FACS와 AAM을 이용한 Bayesian Network 기반 얼굴 표정 인식 시스템 개발 (Development of Facial Expression Recognition System based on Bayesian Network using FACS and AAM)

  • 고광은;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제19권4호
    • /
    • pp.562-567
    • /
    • 2009
  • 얼굴 표정은 사람의 감정을 전달하는 핵심 메커니즘으로 이를 적절하게 활용할 경우 Robotics의 HRI(Human Robot Interface)와 같은 Human Computer Interaction에서 큰 역할을 수행할 수 있다. 이는 HCI(Human Computing Interface)에서 사용자의 감정 상태에 대응되는 다양한 반응을 유도할 수 있으며, 이를 통해 사람의 감정을 통해 로봇과 같은 서비스 에이전트가 사용자에게 제공할 적절한 서비스를 추론할 수 있도록 하는 핵심요소가 된다. 본 논문에서는 얼굴표정에서의 감정표현을 인식하기 위한 방법으로 FACS(Facial Action Coding System)와 AAM(Active Appearance Model)을 이용한 특징 추출과 Bayesian Network 기반 표정 추론 기법이 융합된 얼굴표정 인식 시스템의 개발에 대한 내용을 제시한다.