• Title/Summary/Keyword: facial expression recognition

Search Result 284, Processing Time 0.028 seconds

Recognition and Generation of Facial Expression for Human-Robot Interaction (로봇과 인간의 상호작용을 위한 얼굴 표정 인식 및 얼굴 표정 생성 기법)

  • Jung Sung-Uk;Kim Do-Yoon;Chung Myung-Jin;Kim Do-Hyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.255-263
    • /
    • 2006
  • In the last decade, face analysis, e.g. face detection, face recognition, facial expression recognition, is a very lively and expanding research field. As computer animated agents and robots bring a social dimension to human computer interaction, interest in this research field is increasing rapidly. In this paper, we introduce an artificial emotion mimic system which can recognize human facial expressions and also generate the recognized facial expression. In order to recognize human facial expression in real-time, we propose a facial expression classification method that is performed by weak classifiers obtained by using new rectangular feature types. In addition, we make the artificial facial expression using the developed robotic system based on biological observation. Finally, experimental results of facial expression recognition and generation are shown for the validity of our robotic system.

Robust Facial Expression-Recognition Against Various Expression Intensity (표정 강도에 강건한 얼굴 표정 인식)

  • Kim, Jin-Ok
    • The KIPS Transactions:PartB
    • /
    • v.16B no.5
    • /
    • pp.395-402
    • /
    • 2009
  • This paper proposes an approach of a novel facial expression recognition to deal with different intensities to improve a performance of a facial expression recognition. Various expressions and intensities of each person make an affect to decrease the performance of the facial expression recognition. The effect of different intensities of facial expression has been seldom focused on. In this paper, a face expression template and an expression-intensity distribution model are introduced to recognize different facial expression intensities. These techniques, facial expression template and expression-intensity distribution model contribute to improve the performance of facial expression recognition by describing how the shift between multiple interest points in the vicinity of facial parts and facial parts varies for different facial expressions and its intensities. The proposed method has the distinct advantage that facial expression recognition with different intensities can be very easily performed with a simple calibration on video sequences as well as still images. Experimental results show a robustness that the method can recognize facial expression with weak intensities.

Hybrid Facial Representations for Emotion Recognition

  • Yun, Woo-Han;Kim, DoHyung;Park, Chankyu;Kim, Jaehong
    • ETRI Journal
    • /
    • v.35 no.6
    • /
    • pp.1021-1028
    • /
    • 2013
  • Automatic facial expression recognition is a widely studied problem in computer vision and human-robot interaction. There has been a range of studies for representing facial descriptors for facial expression recognition. Some prominent descriptors were presented in the first facial expression recognition and analysis challenge (FERA2011). In that competition, the Local Gabor Binary Pattern Histogram Sequence descriptor showed the most powerful description capability. In this paper, we introduce hybrid facial representations for facial expression recognition, which have more powerful description capability with lower dimensionality. Our descriptors consist of a block-based descriptor and a pixel-based descriptor. The block-based descriptor represents the micro-orientation and micro-geometric structure information. The pixel-based descriptor represents texture information. We validate our descriptors on two public databases, and the results show that our descriptors perform well with a relatively low dimensionality.

New Rectangle Feature Type Selection for Real-time Facial Expression Recognition (실시간 얼굴 표정 인식을 위한 새로운 사각 특징 형태 선택기법)

  • Kim Do Hyoung;An Kwang Ho;Chung Myung Jin;Jung Sung Uk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.2
    • /
    • pp.130-137
    • /
    • 2006
  • In this paper, we propose a method of selecting new types of rectangle features that are suitable for facial expression recognition. The basic concept in this paper is similar to Viola's approach, which is used for face detection. Instead of previous Haar-like features we choose rectangle features for facial expression recognition among all possible rectangle types in a 3${\times}$3 matrix form using the AdaBoost algorithm. The facial expression recognition system constituted with the proposed rectangle features is also compared to that with previous rectangle features with regard to its capacity. The simulation and experimental results show that the proposed approach has better performance in facial expression recognition.

Recognition of Human Facial Expression in a Video Image using the Active Appearance Model

  • Jo, Gyeong-Sic;Kim, Yong-Guk
    • Journal of Information Processing Systems
    • /
    • v.6 no.2
    • /
    • pp.261-268
    • /
    • 2010
  • Tracking human facial expression within a video image has many useful applications, such as surveillance and teleconferencing, etc. Initially, the Active Appearance Model (AAM) was proposed for facial recognition; however, it turns out that the AAM has many advantages as regards continuous facial expression recognition. We have implemented a continuous facial expression recognition system using the AAM. In this study, we adopt an independent AAM using the Inverse Compositional Image Alignment method. The system was evaluated using the standard Cohn-Kanade facial expression database, the results of which show that it could have numerous potential applications.

Facial Expression Recognition using 1D Transform Features and Hidden Markov Model

  • Jalal, Ahmad;Kamal, Shaharyar;Kim, Daijin
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1657-1662
    • /
    • 2017
  • Facial expression recognition systems using video devices have emerged as an important component of natural human-machine interfaces which contribute to various practical applications such as security systems, behavioral science and clinical practices. In this work, we present a new method to analyze, represent and recognize human facial expressions using a sequence of facial images. Under our proposed facial expression recognition framework, the overall procedure includes: accurate face detection to remove background and noise effects from the raw image sequences and align each image using vertex mask generation. Furthermore, these features are reduced by principal component analysis. Finally, these augmented features are trained and tested using Hidden Markov Model (HMM). The experimental evaluation demonstrated the proposed approach over two public datasets such as Cohn-Kanade and AT&T datasets of facial expression videos that achieved expression recognition results as 96.75% and 96.92%. Besides, the recognition results show the superiority of the proposed approach over the state of the art methods.

Learning Directional LBP Features and Discriminative Feature Regions for Facial Expression Recognition (얼굴 표정 인식을 위한 방향성 LBP 특징과 분별 영역 학습)

  • Kang, Hyunwoo;Lim, Kil-Taek;Won, Chulho
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.5
    • /
    • pp.748-757
    • /
    • 2017
  • In order to recognize the facial expressions, good features that can express the facial expressions are essential. It is also essential to find the characteristic areas where facial expressions appear discriminatively. In this study, we propose a directional LBP feature for facial expression recognition and a method of finding directional LBP operation and feature region for facial expression classification. The proposed directional LBP features to characterize facial fine micro-patterns are defined by LBP operation factors (direction and size of operation mask) and feature regions through AdaBoost learning. The facial expression classifier is implemented as a SVM classifier based on learned discriminant region and directional LBP operation factors. In order to verify the validity of the proposed method, facial expression recognition performance was measured in terms of accuracy, sensitivity, and specificity. Experimental results show that the proposed directional LBP and its learning method are useful for facial expression recognition.

Personalized Facial Expression Recognition System using Fuzzy Neural Networks and robust Image Processing (퍼지 신경망과 강인한 영상 처리를 이용한 개인화 얼굴 표정 인식 시스템)

  • 김대진;김종성;변증남
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.25-28
    • /
    • 2002
  • This paper introduce a personalized facial expression recognition system. Many previous works on facial expression recognition system focus on the formal six universal facial expressions. However, it is very difficult to make such expressions for normal person without much effort and training. And in these days, the personalized service is also mainly focused by many researchers in various fields. Thus, we Propose a novel facial expression recognition system with fuzzy neural networks and robust image processing.

  • PDF

Feature Extraction Based on GRFs for Facial Expression Recognition

  • Yoon, Myoong-Young
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.3
    • /
    • pp.23-31
    • /
    • 2002
  • In this paper we propose a new feature vector for recognition of the facial expression based on Gibbs distributions which are well suited for representing the spatial continuity. The extracted feature vectors are invariant under translation rotation, and scale of an facial expression imege. The Algorithm for recognition of a facial expression contains two parts: the extraction of feature vector and the recognition process. The extraction of feature vector are comprised of modified 2-D conditional moments based on estimated Gibbs distribution for an facial image. In the facial expression recognition phase, we use discrete left-right HMM which is widely used in pattern recognition. In order to evaluate the performance of the proposed scheme, experiments for recognition of four universal expression (anger, fear, happiness, surprise) was conducted with facial image sequences on Workstation. Experiment results reveal that the proposed scheme has high recognition rate over 95%.

  • PDF

A Review of Facial Expression Recognition Issues, Challenges, and Future Research Direction

  • Yan, Bowen;Azween, Abdullah;Lorita, Angeline;S.H., Kok
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.125-139
    • /
    • 2023
  • Facial expression recognition, a topical problem in the field of computer vision and pattern recognition, is a direct means of recognizing human emotions and behaviors. This paper first summarizes the datasets commonly used for expression recognition and their associated characteristics and presents traditional machine learning algorithms and their benefits and drawbacks from three key techniques of face expression; image pre-processing, feature extraction, and expression classification. Deep learning-oriented expression recognition methods and various algorithmic framework performances are also analyzed and compared. Finally, the current barriers to facial expression recognition and potential developments are highlighted.