Journal of Information Technology Applications and Management
/
제10권4호
/
pp.135-147
/
2003
With the development of multimedia and optical technologies, application systems with facial features hare been increased the interests of researchers, recently. The previous research efforts in face processing mainly use the frontal images in order to recognize human face visually and to extract the facial expression. However, applications, such as image database systems which support queries based on the facial direction and image arrangement systems which place facial images automatically on digital albums, deal with the directional characteristics of a face. In this paper, we propose a method to detect facial directions by using facial features. In the proposed method, the facial trapezoid is defined by detecting points for eyes and a lower lip. Then, the facial direction formula, which calculates the right and left facial direction, is defined by the statistical data about the ratio of the right and left area in facial trapezoids. The proposed method can give an accurate estimate of horizontal rotation of a face within an error tolerance of $\pm1.31$ degree and takes an average execution time of 3.16 sec.
최근 멀티미디어 처리 기술과 광학 기술의 발달과 더불어 얼굴 영상 정보를 이용한 응용 시스템에 대한 관심이 증대되고 있다. 기존의 얼굴 정보와 관련한 연구들은 대부분 정면 영상을 해석하여 사람을 식별하거나 영상의 표정을 분석하는데 초점을 두어왔으며 임의의 얼굴 영상의 방향성에 대한 연구는 부족한 실정이다. 특히, 한대의 카메라로 연속 촬영된 이미지들을 이용하는 기존의 방향성 검출 기법에서는 초기 영상이 정면 영상이어야 하는 제약점을 가진다. 본 논문에서는 얼굴의 특징 정보를 이용하여 임의의 얼굴 영상의 방항성을 검출하는 기법을 제안한다. 제안된 기법에서는 두 눈과 입술의 특징점을 기반으로 얼굴 사다리꼴을 정의하고, 얼굴 사다리꼴의 좌$.$우 면적을 비교한 통계 데이터를 이용하여 얼굴 영상의 좌.우 방향성을 계산하는 방향성 함수를 정의한다. 제안된 얼굴 영상의 검출 기법은 얼굴 영상의 방향성에 따라 얼굴 영상의 좌$.$우 여백을 안정적으로 설정하는 영상의 자동 배치 응용에 효과적으로 활용될 수 있다.
표정인식 연구는 맨$\cdot$머신 인터페이스 개발, 개인 식별, 가상모델에 의한 표정복원 등 응용가치의 무한한 가능성과 함께 다양한 분야에서 연구되고 있다 본 논문에서는 인간의 기본정서 중 행복, 분노, 놀람, 슬픔에 대한 4가지 표정을 얼굴의 강체 움직임이 없는 얼굴동영상으로부터 간단히 표정인식 할 수 있는 방법을 제안한다. 먼저, 얼굴 및 표정을 결정하는 요소들과 각 요소의 특징영역들을 색상, 크기 그리고 위치정보를 이용하여 자동으로 검출한다. 다음으로 Gradient Method를 이용하여 추정한 광류 값으로 특징영역들에 대한 방향패턴을 결정한 후, 본 연구가 제안한 방향모델을 이용하여 방향패턴에 대한 매칭을 행한다. 각 정서를 대표하는 방향모델과의 패턴 매칭에서 그 조합 값이 최소를 나타내는 부분이 가장 유사한 정서임을 판단하고 표정인식을 행한다. 마지막으로 실험을 통하여 본 논문의 유효성을 확인한다.
본 논문에서는 실시간으로 입력되는 비디오 영상으로부터 사용자의 얼굴 방향을 효율적으로 추정하는 새로운 방법을 제안하였다. 이를 위하여 입력 영상으로부터 외부조명의 변화에 덜 민감한 Haar-like 특성을 이용하여 얼굴영역의 검출을 수행하고 검출 된 얼굴영역 내에서 양쪽 눈, 코, 입 등의 주요 특성을 검출한다. 이 후 실시간으로 매 프레임마다 광류를 이용해 검출된 특징 점을 추적하게 되며, 추적된 특징 점을 이용해 얼굴의 방향성 추정한다. 일반적으로 광류를 이용한 특징 추적에서 발생할 수 있는 특징점의 좌표가 유실되어 잘못된 특징점을 추적하게 되는 상황을 방지하기 위하여 검출된 특징점의 템플릿 매칭(template matching)을 사용해 추적중인 특징점의 유효성을 실시간 판단하고, 그 결과에 따라 얼굴 특징 점들을 다시 검출하거나, 추적을 지속하여 얼굴의 방향성을 추정을 가능하게 한다. 탬플릿 매칭은 특징검출 단계에서 추출된 좌우 눈, 코끝 그리고 입의 위치 등 4가지 정보를 저장한 후 얼굴포즈 측정에 있어 광류에의해 추적중인 해당 특징점들 간의 유사도를 비교하여 유사도가 임계치를 벗어 날 경우 새로이 특징점을 찾아내는 작업을 수행하여 정보를 갱신한다. 제안된 방법을 통해 얼굴의 특성 추출을 위한 특성 검출과정과 검출된 특징을 지속적으로 보완하는 추적과정을 자동적으로 상호 결합하여 안정적으로 실시간에 얼굴 방향성 추정 할 수 있었다. 실험을 통하여 제안된 방법이 효과적으로 얼굴의 포즈를 측정할 수 있음을 입증하였다.
In this paper we concentrate on overall direction of the gaze based on a head pose for human computer interaction. To decide a gaze direction of user in a image, it is important to pick up facial feature exactly. For this, we binarize the input image and search two eyes and the mouth through the similarity of each block ( aspect ratio, size, and average gray value ) and geometric information of face at the binarized image. We create a imaginary plane on the line made by features of the real face and the pin hole of the camera to decide the head orientation. We call it the virtual facial plane. The position of a virtual facial plane is estimated through projected facial feature on the image plane. We find a gaze direction using the surface normal vector of the virtual facial plane. This study using popular PC camera will contribute practical usage of gaze tracking technology.
Make-up changes facial images. In particular, eyebrow make-up is a part of changing expression most easily and effectively. While color make-up is helpful to produce women's desired image with their favorite colors, eyebrow make-up is hidden actor to give a clear impression to others. Therefore, this study connected facial type which is an important factor deciding facial image with eyebrow, examined image of eyebrow make-up and that changed by facial types and aimed to be helpful in producing more effective facial image with eyebrow make-up considering one's facial type. Consequently, it was found that eyebrow make-up was a great factor in making better facial impression and image and complementing the weakness of facial type. h strong impression of facial type can be changed into soft shape or foolish shape in worse case depending on the types of eyebrow make-up. Eyebrow make-up shows charming image as angle of eyebrow is steep, heavy image as eyebrow is horizontal, cold image as eyebrow tail rises and simple and dull image as it lowers. Therefore, it is known that image of eyebrow make-up can be governed by several factors including angle and direction of eyebrow. Consequently, it is thought that most effective eyebrow make-up considers individual facial types, images of their eyes, noses and mouths and factors deciding angle, direction and colors of eyebrow.
최근 급속한 HCI(Human-Computer Interaction) 및 감시 기술의 발달로, 얼굴영상을 처리하는 다양한 시스템들에 대한 관심이 높아지고 있다. 그러나 이런 얼굴영상을 처리하는 시스템들에 대한 연구는 주로 얼굴인식이나 얼굴 표정분석과 같은 분야에 집중되었고, 얼굴의 방향성 검출과 같은 분야에는 많은 연구가 수행되지 못하였다. 본 논문은 두 눈썹과 아래 입술로 구성된 얼굴삼각형(Facial Triangle)이라는 특징을 이용하여 얼굴의 방향성을 쉽게 측정하는 방법을 제안한다. 특히, 하나의 이미지만을 사용하여 얼굴의 수평 회전각과 수직 회전각을 구하는 간단한 공식을 소개한다. 수평회전각은 좌 우 얼굴삼각형간의 면적비율을 이용하여 계산하고, 수직회전각은 얼굴삼각형의 밑변과 높이 비율을 이용하여 계산한다. 실험을 통해, 제안하는 방법은 오차범위 ${\pm}1.68^{\circ}$ 내에서 수평회전각을 구할 수 있었고, 수직회전각은 회전각이 증가할수록 오류가 줄어드는 경향을 보여주었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권12호
/
pp.6000-6017
/
2018
This paper presents a new descriptor, named Histograms of Prominent Edge Directions (HPED), for the recognition of facial expressions in a person-independent environment. In this paper, we raise the issue of sampling error in generating the code-histogram from spatial regions of the face image, as observed in the existing descriptors. HPED describes facial appearance changes based on the statistical distribution of the top two prominent edge directions (i.e., primary and secondary direction) captured over small spatial regions of the face. Compared to existing descriptors, HPED uses a smaller number of code-bins to describe the spatial regions, which helps avoid sampling error despite having fewer samples while preserving the valuable spatial information. In contrast to the existing Histogram of Oriented Gradients (HOG) that uses the histogram of the primary edge direction (i.e., gradient orientation) only, we additionally consider the histogram of the secondary edge direction, which provides more meaningful shape information related to the local texture. Experiments on popular facial expression datasets demonstrate the superior performance of the proposed HPED against existing descriptors in a person-independent environment.
This paper proposes a novel human-computer interaction system for the disabled using recognition of face direction. Face direction is recognized by comparing positions of center of gravity between face region and facial features such as eyes and eyebrows. The face region is first selected by using color information, and then the facial features are extracted by applying a separation filter to the face region. The process speed for recognition of face direction is 6.57frame/sec with a success rate of 92.9% without any special hardware for image processing. We implement human-computer interaction system using screen menu, and show a validity of the proposed method from experimental results.
In order to recognize the facial expressions, good features that can express the facial expressions are essential. It is also essential to find the characteristic areas where facial expressions appear discriminatively. In this study, we propose a directional LBP feature for facial expression recognition and a method of finding directional LBP operation and feature region for facial expression classification. The proposed directional LBP features to characterize facial fine micro-patterns are defined by LBP operation factors (direction and size of operation mask) and feature regions through AdaBoost learning. The facial expression classifier is implemented as a SVM classifier based on learned discriminant region and directional LBP operation factors. In order to verify the validity of the proposed method, facial expression recognition performance was measured in terms of accuracy, sensitivity, and specificity. Experimental results show that the proposed directional LBP and its learning method are useful for facial expression recognition.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.