본 논문은 89명의 여대생을 대상으로 아유르베다의 세 가지 체질인 바타, 피타, 카파에 따른 얼굴 피부의 수분, 유분, pH의 값을 측정하여 비교하였다. 아유르베다 체질에 따른 피부 상태를 알아보기 위하여 분석한 결과 수분의 경우 피타, 카파, 바타의 순으로(p<0.001) 유분의 경우 카파, 피타, 바타의 순으로 (p<0.001, p<0.01) pH의 경우 카파, 피타, 바타의 순으로 (p<0.01) 통계적으로 유의한 차이가 있었다. 앞으로의 연구에서는 피부미용학적 관점에서 아유르베다 체질에 대한 보다 체계적이고 과학적인 연구가 진행되어야 할 것이다.
본 논문에서는 딥러닝 기술 중의 하나인 CNN(Convolutional Neural Network)을 이용한 얼굴 표정 인식 기법을 제안한다. 기존의 얼굴 표정 데이터베이스의 단점을 보완하고자 질 좋은 다양한 데이터베이스를 이용한다. 제안한 기법에서는 '무표정', '행복', '슬픔', '화남', '놀람', 그리고 '역겨움' 등의 여섯 가지 얼굴 표정 data-set을 구축한다. 효율적인 학습 및 분류 성능을 향상시키기 위해서 전처리 및 데이터 증대 기법(data augmentation)도 적용한다. 기존의 CNN 구조에서 convolutional layer의 특징지도의 수와 fully-connected layer의 node의 수를 조정하면서 여섯 가지 얼굴 표정의 특징을 가장 잘 표현하는 최적의 CNN 구조를 찾는다. 실험 결과 제안하는 구조가 다른 모델에 비해 CNN 구조를 통과하는 시간이 가장 적게 걸리면서도 96.88%의 가장 높은 분류 성능을 보이는 것을 확인하였다.
Atypical facial pain is persistent facial pain in the absence of clinical neurological deficit. We experienced two patient who are diagnosed atypical facial pain with Classification of International Headache Society. They were treated by acupuncture at their cervical and facial region. After treatment, their Pain intensity numerical rating scale(PI-NRS) is decreased and EuroQol five dimensions questionnaire(EQ-5D) score is increased. Treatment of acupuncture at cervical and facial region could be effective for easing the clinical symptoms of atypical facial pain. Further studies are needed to find effective treatment for atypical facial pain.
In order to recognize the facial expressions, good features that can express the facial expressions are essential. It is also essential to find the characteristic areas where facial expressions appear discriminatively. In this study, we propose a directional LBP feature for facial expression recognition and a method of finding directional LBP operation and feature region for facial expression classification. The proposed directional LBP features to characterize facial fine micro-patterns are defined by LBP operation factors (direction and size of operation mask) and feature regions through AdaBoost learning. The facial expression classifier is implemented as a SVM classifier based on learned discriminant region and directional LBP operation factors. In order to verify the validity of the proposed method, facial expression recognition performance was measured in terms of accuracy, sensitivity, and specificity. Experimental results show that the proposed directional LBP and its learning method are useful for facial expression recognition.
최근 안면 피부 미용에 대한 사람들의 관심이 높아짐에 따라 딥 러닝을 활용한 안면 피부 미용을 위한 피부 질환 인식 연구가 진행되고 있다. 이러한 연구들은 여드름을 비롯한 다양한 피부 질환을 인식한다. 기존의 연구들은 단일 피부 질환만을 인식하지만, 안면에 발생하는 피부 질환은 더 다양하고 복합적으로 발생할 수 있다. 따라서 본 논문에서는 Inception-ResNet V2 모델을 활용하여 다중 레이블 분류 방법으로 여드름, 블랙헤드, 주근깨, 검버섯, 일반 피부, 화이트헤드에 관한 복합적인 피부 질환을 인식한다. 사용한 평가 지표 중 정확도는 98.8%, 해밍 손실은 0.003을 달성하였고, 단일 클래스별 정밀도, 재현율, F1-점수는 모두 96.6% 이상을 달성하였다.
본 논문에서는 얼굴의 기하학적 특징정보를 기반으로 하여 얼굴의 특징자인 눈썹, 눈, 입, 턱선의 분류 및 해석 알고리즘을 제안하였다. 먼저, 얼굴 특징정보의 분류와 해석을 하기위한 전처리 과정으로 얼굴 특징자들의 눈, 코, 입, 눈썹, 턱선을 추출하기위해 얼굴 특징자 추출 알고리즘을 적용하여 얼굴 특징자들을 추출하게 된다. 추출한 얼굴 특징자들의 형태 정보와 모양정보 및 특징자들 간의 거리비율을 검출하여 이를 평가함수화 하고, 3가지의 눈 타입, 9가지의 입 타입, 12가지의 눈썹 타입 그리고 4가지의 턱선 타입의 분류를 하게 된다. 이렇게 분류된 얼굴 특징자들을 이용하여 얼굴을 해석하게 된다. 얼굴해석 알고리즘은 각각의 특징자들에 대한 고유의 특징자들의 내부구간의 화소분포 정보와 기울기 정보를 가지고 있다. 따라서 특징자들 간의 정보를 이용하여 얼굴을 해석할 수 있었다.
본 연구에서는 학습한 표정 패턴을 기반으로 비디오에서 사람의 얼굴을 검출하고 표정을 분석하여 분류하는 프레임워크를 제안한다. 제안 프레임워크는 얼굴 표정을 인식하는데 있어 공간적 정보 외시간에 따라 변하는 표정의 패턴을 표현하기 위해 표정 특성을 공간적으로 분석한 PCA와 시공간적으로 분석한 Hidden Markov Model(HMM) 기반의 표정 HMM을 이용한다. 표정의 공간적 특징 추출은 시간적 분석 과정과 밀접하게 연관되어 있기 때문에 다양하게 변화하는 표정을 검출하여 추적하고 분류하는데 HMM의 시공간적 접근 방식을 적용하면 효과적이기 때문이다. 제안 인식 프레임워크는 현재의 시각적 관측치와 이전 시각적 결과간의 사후 확률 방법에 의해 완성된다. 결과적으로 제안 프레임워크는 대표적인 6개 표정뿐만 아니라 표정의 정도가 약한 프레임에 대해서도 정확하고 강건한 표정 인식 결과를 보인다. 제안 프레임 워크를 이용하면 표정 인식, HCI, 키프레임 추출과 같은 응용 분야 구현에 효과적이다
사용자의 상황에 따라 적절한 서비스를 제공하는 컴퓨팅 환경을 구현하려는 유비쿼터스 컴퓨팅에서 사람과 기계간의 효과적인 상호작용과 사용자의 상황 인식을 위해 사용자의 얼굴 표정 기반의 감정 인식이 HCI의 중요한 수단으로 이용되고 있다. 본 연구는 새로운 베이지안 분류기를 이용하여 상황에 민감한 얼굴 표정에서 기본 감정을 강건하게 인식하는 문제를 다룬다. 표정에 기반한 감정 인식은 두 단계로 나뉘는데 본 연구에서는 얼굴 특징 추출 단계는 색상 히스토그램 방법을 기반으로 하고 표정을 이용한 감정 분류 단계에서는 학습과 테스트를 효과적으로 실행하는 새로운 베이지안 학습 알고리즘인 EADF(Extended Assumed-Density Filtering)을 이용한다. 상황에 민감한 베이지안 학습 알고리즘은 사용자 상황이 달라지면 복잡도가 다른 분류기를 적용할 수 있어 더 정확한 감정 인식이 가능하도록 제안되었다. 실험 결과는 표정 분류 정확도가 91% 이상이며 상황이 드러나지 않게 얼굴 표정 데이터를 모델링한 결과 10.8%의 실험 오류율을 보였다.
In this paper, we propose a method of selecting new types of rectangle features that are suitable for facial expression recognition. The basic concept in this paper is similar to Viola's approach, which is used for face detection. Instead of previous Haar-like features we choose rectangle features for facial expression recognition among all possible rectangle types in a 3${\times}$3 matrix form using the AdaBoost algorithm. The facial expression recognition system constituted with the proposed rectangle features is also compared to that with previous rectangle features with regard to its capacity. The simulation and experimental results show that the proposed approach has better performance in facial expression recognition.
본 논문에서는 복합 칼라정보와 얼굴의 기하학적 정보를 이용한 인터넷 기반 얼굴관상해석 및 자동 얼굴 컨텐츠 생성시스템을 제안하였다. 제안한 시스템은 YCbCr과 YIQ 칼라모델의 Cr과 I 성분의 논리곱 연산처리로 얼굴영역을 검출하였다. 검출한 얼굴영역에서 얼굴의 기하학적 정보로부터 얼굴 특징자를 추출 하였으며 각 특징자들을 세부 분류하여 얼굴 관상을 해석하도록 하였다. 또한 제안한 시스템은 추출과 분류된 특징자로부터 개인의 얼굴에 가장 적합한 얼굴 아바타 컨텐츠를 자동 생성할 수 있게 하였다. 실험결과 제안한 방법은 기존의 얼굴인식 방법에 비해 실시간 얼굴검출과 인식은 물론 정량적인 얼굴관상해석과 자동 얼굴 아바타 생성이 가능하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.