본 논문에서는 얼굴 인식을 위한 보다 안정적이며 조명 변화와 회전에 강인하게 얼굴 영역을 검출하며, 계산의 효율성과 검출 성능을 동시에 만족시키는 강인한 인식 알고리즘에 대해 제안한다. 제안하는 알고리즘은 전처리 과정을 거쳐 정규화한 후 얼굴 영역만을 분할 검출한 후 주성분분석(PCA)을 이용하여 특징벡터를 구한다. 또한 구해진 특징벡터를 SVM에 적용하여 최적의 이진분류를 진행함으로써 얼굴 영역에 대한 검증을 수행한다. 검증 후 특징벡터를 다시 LDA에 적용하여 2차원 공간상에서 유클리디안 거리 이용하여 최종 얼굴을 인식하게 된다. 본 논문에서 제안하는 방법으로 인식률의 안전성과 정확성을 향상시킬 수 있었으며, 차원 축소로 인해 많은 계산 량이 요구되지 않기 때문에 실시간 인식도 가능하다.
본 논문에서는 실시간 얼굴인증 시스템의 구축을 위한 LVQ 신경망 기반의 새로운 얼굴 인식 방법을 제안한다. 기존의 연구에서 PCA, LDA 변환이 많이 적용되며 신경망을 결합한 형태가 제안되고 있지만 신경망 학습 시간이 오래 걸리는 단점을 가지고 있다. LVQ 신경망은 학습 시간이 짧고 클래스간의 분리도를 최대화할 수 있는 교사학습방법이다. 따라서, 본 논문에서 제안된 방법은 동영상으로부터 실시간으로 입력되는 얼굴영상을 PCA와 LDA변환을 순차적으로 적용하여 부분공간상의 변환된 특징벡터로부터 LVQ 신경망의 학습을 통하여 얼굴을 인식한다. 외부조명의 영향에 강건한 인식시스템을 구축하기 위하여 얼굴검출 단계에서 검출된 얼굴영역은 밝기값의 최대-최소 정규화 방법에 의해 보정된 정규화 영상을 생성한다. 정규화된 얼굴영상은 PCA와 LDA 변환을 통해 부분공간상의 특징벡터로 변환된다. 변환된 훈련 데이터로부터 LVQ 신경망의 초기 중심 벡터를 결정하고 신경망의 학습률 향상을 위해 K-Means 클러스터링 알고리즘을 적용하며, 초기 중심 벡터를 이용하여 LVQ2 학습 방법에 의해 학습된 중심벡터는 클래스의 대표 벡터가 된다. 결국 각 클래스의 대표 벡터로부터 입력 영상의 특징벡터간의 유클리디언 거리 비교법을 적용하여 얼굴 인식을 수행한다. ORL 데이터베이스를 이용한 정지 영상에 대한 인식과 실시간으로 입력되는 영상에 대한 인식 등 두 가지 형태의 영상을 기반으로 실험한 결과 두 경우에 모두 제안된 방법이 기존의 인식 방법보다 인식률에서 우수함을 입증할 수 있었다.
본 논문에서는 실시간 얼굴인식 시스템을 위한 새로운 LINF(Linear Independent Non-negative Factorization) 알고리즘을 제안한다. 시스템은 크게 얼굴추출 부분과 얼굴인식 부분으로 구성 되어 있으며, 얼굴추출 부분에는 차영상, 눈과 입의 영역 검출 그리고 정규화 방법을 사용하였고, 얼굴인식 부분에는 추출된 얼굴 후보 영역 영상에 LINF 를 적용하였다. 기존의 PCA(Principal Component Analysis)만을 사용한 인식시스템은 낮은 인식률을 보였으며, LDA(Linear Discriminants Analysis)만을 사용한 인식시스템에서는 학습데이터의 수에 비하여 영상의 화소 개수가 많은 경우 LDA를 그대로 적용하기 곤란하였다. 이러한 단점을 극복하기 위하여, 본 논문에서 제안하는 시스템은 기존의 고유얼굴과 달리 비음수 값을 갖는 행렬로 차원을 축소하여 LDA를 적용하였다. 제안한 시스템의 성능을 평가하기 위하여 자체 제작한 DAUface 데이터베이스와 영국 Cambridge 에 있는 AT&T 연구소에서 제공하는 ORL 데이터베이스를 가지고 실험을 하였다. 실험 결과, 제안된 방법이 PCA 방법과 LDA 방법, ICA(Independent Component Analysis) 방법, 그리고 PLMA(PCA-based LDA mixture algorithm)에 비해 인식률이 상당히 우수함을 알 수 있었다.
본 논문에서는 실시간 폐쇄회로 화면으로 받은 컬러 이미지에서 얼굴영상을 추출하고 이미 지정된 특정인의 얼굴영상과 비교를 통해 지하철이나 은행 등 공공장소에서의 수배자 등 어떤 특정인을 검출하는 방법을 제안하고자 한다. 감시카메라의 특성상 화면속의 얼굴정보가 임의의 크기로 가변하고 영상 내에서 다수의 얼굴정보를 포함하고 있음을 가정할 때, 얼굴영역을 얼마나 정확하게 검색 할 수 있느냐에 초점을 맞추었다. 이를 해결하기 위하여F.Rosenblatt가 제안한 퍼셉트론 신경망 모델을 기초로 임의의 얼굴영상에 대한 $20{\times}20$ 픽셀로 서브샘플링을 사용한 규준화 작업을 통해서 전면얼굴에서와 같은 인식기법의 효과를 사용하고, 획득한 얼굴후보 영역에 대하여 조명이나 빛에 의한 외부환경의 간섭을 최소화하기 위하여 최적선형필터와 히스토그램 평활화 기법을 이용하였다. 그리고 불필요한 학습을 최소화하기 위하여 달걀형 마스크의 덧셈연산을 전 처리 과정에 추가하였다. 전 처리 과정을 마친 이미지는 각각 세 개의 수용필드로 쪼개어져 특정 위치에 존재하는 눈, 코, 입 능의 정보를 신경망 학습을 통해 최종 결정된다. 또한 각각 다른 초기값을 가지는 3개의 단일셋 네트워크시스템을 병력형태로 구성하여 결과의 정확도를 높여 구현하였다.
본 논문에서는 일곱 가지의 기본적인 감정 정보를 자동으로 파악하고 얼굴을 PDA 상에서 렌더링할 수 있는 얼굴 표정의 인식 및 합성 시스템을 제시한다. 얼굴 표정 인식을 위해서 먼저 카메라로부터 획득한 영상으로부터 얼굴 부분을 검출한다. 그리고 나서 기하학적 또는 조명으로 인한 보정을 위해 정규화 과정을 거친다. 얼굴 표정을 분류하기 위해서는 Gabor wavelets 방법을 enhanced Fisher 모델과 결합하여 사용할 때가 가장 좋은 결과를 보였다. 본 표정 분류에서는 일곱 가지 감정 가중치가 결과로 제시되고, 그러한 가중 정보는 모바일 네트웍을 통하여PDA 상으로 전송되어 얼굴 표정 애니메이션에 이용되어진다. 또한 본 논문에서는 고유한 얼굴 캐릭터를 가진 3차워 아바타를 생성하기 위하여 카툰 쉐이딩 기법을 채택하였다. 실험 결과 감정 곡선을 이용한 얼굴 표정 애니메이션은 선형 보간법 보다 감정 변화의 타이밍을 표현하는데 더 효과적인 것으로 나타났다.
얼굴 영상은 똑같은 표정의 같은 사람이라도 조명에 따라 매우 다른 얼굴 영상으로 나타난다. 따라서 본 논문에서는 조명 변화에 강인한 얼굴 인식 방법을 제안한다. 제안된 방법은 오프라인 훈련(off-line training)과 온라인 인식(on-line recognition)의 두 부분으로 이루어져 있다. 오프라인 훈련은 PCA(principal component analysis)를 기반으로 한다. 온라인 인식에서는 조명 변화에 대한 보상, 얼굴 특징의 추출, 그리고 인식을 위한 분류 과정의 3 단계로 구성되어 있다. 오프라인 훈련에서는 전체 훈련 얼굴 영상 데이터에 PCA를 적용하여 조명 변화가 최대한 제외된 특징 벡터 공간을 생성한다. 실제 인식 단계에서는 첫 번째로 입력 영상으로 들어온 얼굴 영상에서 조명의 영향을 보상하기 위해 준동형 필터링(homomorphic filtering) 후 밝기 정규화(normalization)를 취한다. 두 번째 단계에서는 입력 데이터의 차원을 줄이고 얼굴 특징 벡터를 구하기 위해 PCA를 수행한다. 마지막 과정으로서 입력 영상의 특징 벡터들과 오프라인에서 미리 구하여진 특징 벡터들의 유사도를 측정하여 얼굴을 인식하게 된다. 실험 결과 제안된 방법은 기존의 Eigenface 방법에 비해 우수한 성능을 나타내었다.
본 논문은 3차원 얼굴 형상을 이용한 얼굴 인식에 있어서, 정규화 과정에 사용될 얼굴의 특징 영역을 추출하는 방법을 제안한다. 3차원 얼굴 형상은 조명의 변화에 상관없이 얼굴의 특징 분석이 가능하고, 이를 이용한 얼굴 인식이 가능하다. 그러나, 입력된 형상에 따라 회전, 기울어진 정도, 그리고 좌우로 움직인 정도가 다르다 이런 특성을 고려하지 않고 추출된 특징들은 잘못된 인식 결과를 초래할 수 있다. 이런 이유로 입력시의 오류 돌을 바로잡는 정규화 과정이 필요하다. 정규화 과정에서는 얼굴의 기하학적인 특징(눈, 코, 입 등)을 이용하는 것이 일반적이다. 이들 중, 코는 3차원 얼굴 형상에서 두드러진 특징이 될 수 있다. 본 연구에서는 코의 실제 형상과 유사한 코 형상 추출 마스크를 사용하여 입력된 형상으로부터 코 영역을 추출하는 방법을 제안한다.
휴대 단말 기기에 대한 관심 증가와 함께 사용자의 얼굴을 검출하는 응용 방법에 대한 연구가 활발히 진행되고 있다. 하지만 주변 조명 등의 영향으로 얼굴 검출이 어려운 문제점이 있다. 이를 해결하기 위하여 다양한 접근방법이 제안되어 왔지만, 제한된 하드웨어에 적용하기에는 높은 복잡도를 가지는 문제점이 있다. 본 논문에서는 이러한 문제점을 해결하고 효율적으로 얼굴 검출 정확도를 향상 시킬 수 있는 조명 대비를 개선 알고리즘을 제안하였다. 이를 위하여 입력된 영상에서 가우시안 분포를 분석하고, 분석된 분포를 기반으로 각기 다른 조명 대비 개선 알고리즘을 적용하였다. 실험 결과 제안하는 방법이 다양한 조명 환경에서 얼굴 검출 정확도를 향상 시키는 것을 확인하였다.
This paper is to introduce an application of face recognition algorithm in parallel. We have experiments of 25 images with different motions and simulated the image recognitions; grouping of the image vectors, image normalization, calculating average image vectors, etc. We also discuss an analysis of the related eigen-image vectors and a parallel algorithm. To develop the parallel algorithm, we propose a new type of initial matrices for eigenvalue problem. If A is a symmetric matrix, initial matrices for eigen value problem are investigated: the "optimal" one, which minimize ${\parallel}C-A{\parallel}_F$ and the "super optimal", which minimize ${\parallel}I-C^{-1}A{\parallel}_F$. In this paper, we present a general new approach to the design of an initial matrices to solving eigenvalue problem based on the new optimal investigating C with preserving the characteristic of the given matrix A. Fast all resulting can be inverted via fast transform algorithms with O(N log N) operations.
본 논문은 실시간 카메라 입력 환경에서의 새로운 얼굴 검출 및 추적 알고리즘을 제안한다. 복잡한 배경과 다양한 조명 조건에 관계 없이 얼굴을 검출하고 추적하기 위해 세 종류의 웨이블릿 변환된 형판을 사용하고 특히 다양한 조명 조건을 극복하기 위해 최소-최대 정규화(Min-Max Normalization)와 히스토그램 평활화를 혼합 적용하여 매우 밝거나, 매우 어두운 영상에서의 얼굴 오 검출 및 놓침을 줄이도록 하였다. 또한 세가지 크기의 얼굴 형판을 이용함으로써 입력 영상에 존재하는 다양한 크기의 얼굴도 검출할 수 있었으며, 효과적인 얼굴 추적 기법을 통해 다음 프레임에서의 얼굴 위치를 예측하여 그 지점에서의 탐색 영역에 형판 정합을 수행함으로써 수행 시간도 단축시킬 수 있었다. 실험을 위해 다양한 조명 조건에 따라 여섯 종류로 분류한 동영상 데이터에서 제안한 알고리즘은 약 96.8%의 뛰어난 얼굴 검출율을 보여 주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.