본 논문에서는 딥러닝 프레임워크 기반의 얼굴인증 시스템에 대하여 제안한다. 제안 시스템은 딥러닝 알고리즘을 활용하여 얼굴영역 검출과 얼굴 특징 추출을 수행하고, 결합베이시안 학습 모델을 이용하여 얼굴인증을 수행한다. 제안 얼굴인증 알고리즘에 대한 성능 평가는 다양한 얼굴 사진들로 구성된 데이터베이스를 이용하여 수행하였으며, 한 명에 대한 얼굴 영상은 2장으로 구성하였다. 또한 얼굴인증 실험은 딥 뉴럴 네트워크를 통한 2048차원의 특징과 그 유사성을 측정하기 위해 결합베이시안 알고리즘을 적용하였으며, 얼굴인증에 실패한 동일오율을 계산함으로써 성능평가를 수행하였다. 실험 결과, 딥러닝 특징과 결합베이시안 알고리즘을 사용한 제안 방법은 1.2%의 동일오율을 보였다.
This paper focuses on the study of the robustness of face authentication methods under illumination changes. Four different face authentication methods are tried. These methods are as follows; Principal Component Analysis, Gaussian Mixture Models, 1-Dimensional Hidden Markov Models, 2-Dimensional Hidden Markov Models. Experiment results involving an artificial illumination change to face images are compared with each others. Face feature vector extraction method based on the 2-Dimensional Discrete Cosine Transform is used. Experiments to evaluate the above four different face authentication methods are carried out on the Olivetti Research Laboratory(ORL) face database. For the pseudo 2D HMM, the best EER (Equal Error Rate) performance is observed.
According to brilliant development of smart devices, many related services are being devised. And, almost every service is designed to provide user-centric services based on personal information. In this situation, to prevent unintentional leakage of personal information is essential. Conventionally, ID and Password system is used for the user authentication. This is a convenient method, but it has a vulnerability that can cause problems due to information leakage. To overcome these problem, many methods related to face recognition is being researched. Through this paper, we investigated the trend of user authentication through biometrics and a representative model for face recognition techniques. One is DeepFace of FaceBook and another is FaceNet of Google. Each model is based on the concept of Deep Learning and Distance Metric Learning, respectively. And also, they are based on Convolutional Neural Network (CNN) model. In the future, further research is needed on the equipment configuration requirements for practical applications and ways to provide actual personalized services.
ICT 발달로 인해 면대면이 아닌 온라인 상에서 상대방의 신원을 확인하는 사용자인증 필요성이 증가하고 있다. 사용자인증은 보안의 기본으로 여러 분야에서 사용되고 있다. ID기반의 인증은 안전성과 분실 가능성이 많아 보안이 요구되어지는 곳에서는 2개 이상의 인증도구를 사용하게 된다. 최근에 ID나 OTP, SMS 인증보다 생체인증이 신뢰성 등에서 효과적인 측면으로 많이 고려되고 있다. 최근 생체인식 기술을 응용하여 적용되는 분야들이 다양하게 증가함에 따라 생체인식에 대한 적용도 모바일 결제 시스템, 지능형 CCTV, 출입국심사, 출입통제 등 다양한 분야에서 사용되고 있다. 생체인식으로는 지문, 홍체, 망막, 정맥 등에 이어 얼굴인식에 대한 연구가 활발히 이루어지고 있다. 본 논문에서는 얼굴인식 기술의 이해와 기술 동향를 비롯한 국내외 표준화 현황에 대해 알아보고 한다.
In response to increased security concerns, biometrics is becoming more focused on overcoming or complementing conventional knowledge and possession-based authentication. However, biometric authentication requires special care since the loss of biometric data is irrecoverable. In this paper, we present a biometric authentication framework, where several novel techniques are applied to provide security and privacy. First, a biometric template is saved in a transformed form. This makes it possible for a template to be canceled upon its loss while the original biometric information is not revealed. Second, when a user is registered with a server, a biometric template is stored in a special form, named a 'soft vault'. This technique prevents impersonation attacks even if data in a server is disclosed to an attacker. Finally, a one-time template technique is applied in order to prevent replay attacks against templates transmitted over networks. In addition, the whole scheme keeps decision equivalence with conventional face authentication, and thus it does not decrease biometric recognition performance. As a result, the proposed techniques construct a secure face authentication framework in open networks.
본 논문에서는 고차원 국부이진패턴과 결합베이시안 알고리즘을 이용한 얼굴인증 임베디드 시스템을 제안한다. 또한, 제안된 알고리즘에 대한 임베디드 시스템을 라즈베리파이 3을 이용하여 구현한 결과를 제시한다. 제안된 얼굴인증 알고리즘에 대한 평가는 500명의 얼굴 데이터가 저장된 데이터베이스를 이용하여 수행하였다. 여기서 각각의 얼굴 데이터는 학습용과 테스트용 이미지로 구성하였다. 성능평가를 위한 척도로는 주성분분석법의 차원에 따른 스코어 분포와 얼굴인증 시간을 이용하였다. 그 결과, 최적화된 임베디드 환경에서 우수한 얼굴인증 성능을 가지는 임베디드 시스템을 상대적으로 저렴한 비용으로 구현할 수 있음을 확인하였다.
Song, JongGun;Lee, Young Sil;Jang, WonTae;Lee, HoonJae;Kim, TaeYong
International Journal of Internet, Broadcasting and Communication
/
제8권2호
/
pp.38-42
/
2016
In this paper, we propose 3-factor mobile banking authentication scheme applied to face recognition techniques with existing certificate and OTP. An image of the user's face is captured by smart phone camera and its brightness processing of the contour of a face and background by n of X and Y points. Then, distance between the point of eyes, nose and mouth from captured user's face are compared with stored facial features. When the compared results corresponding to the data that stored in a face recognition DB, the user is authenticated.
네트워크로 연결된 환경에서 PIN 번호를 이용해 사용자의 신분을 증명하고 인증하는 방식이 일반적으로 활용되고 있다. 그러나, 아이디나 비밀번호가 해킹을 통해 유출되면 금전적인 피해뿐만 아니라 개인의 사생활까지도 침해받게 된다. 본 논문에서는 아이디나 비밀번호가 유출될 염려가 없는 안전한 인증방식으로 얼굴인식을 채택하였다. 또한, 2-Tier 간의 인증방식이 아닌 점점 분산화 되어 가는 네트워크 시스템을 고려해 3-Tier이상의 분산된 환경에서 원격으로 신분을 증명하고 인증할 수 있는 시스템을 제안하였다. 본 인증시스템의 얼굴인식 알고리즘으로는 최근 분류(Classification)와 특징추출(Feature Extraction)에서 빠른 속도와 정확성을 보이는 SVM(Support Vector Machine)과 PCA를 이용해 얼굴 특징을 분석하고, 분산된 환경에서 인공지능 기법을 활용해 인식속도 및 정확성을 높일 수 있는 분산형 인공지능 얼굴인증 모듈을 구현하였다.
본 논문은 실시간 영상처리 기반의 얼굴 인증시스템 구현을 제안하였다. 실시간 얼굴 인증 시스템 구현을 위해 두 단계의 처리과정을 수행한다. 첫 번째 얼굴검출 단계에서 Wavelet 변환, LoG 연산자, Hausdorff 거리 매칭 알고리즘의 특징을 사용하여 최적화된 얼굴 검출한다. 두 번째 단계에서 실시간 얼굴 인식을 위해 적용한 새로운 dual-line 주성분분석법은 일반적인 주성분분석법의 국부적인 변화를 수용할 수 있도록 수직라인에 수평라인을 결합하여 제안하였다. 제안된 시스템은 크기나 해상도에 영향을 적게 받으며, 모의실험 결과 기존 알고리즘보다 더 우수함을 보였다. 마지막으로 얼굴 인증시스템의 구현을 통하여 성능검증 및 실시간으로 처리됨을 확인하였다.
차이가 나는 물체를 구별하는 물체인식과 달리, 얼굴인식은 유사한 패턴을 가진 얼굴의 Identity를 구별한다. 이에 따라 LBP, HOG, Gabor과 같은 특징 추출 알고리즘이 딥러닝 기반으로 대체되고 있다. 딥 러닝 기술을 활용하여 머신러닝으로 얼굴을 식별할 수 있는 기술이 발전하면서 다양한 분야에서 얼굴인식 기술이 활용되고 있다. 특히, 금융 거래 외에도 사용자 식별이 필요한 다양한 오프라인 환경에서 활용되어 세밀하고 개인에 적합한 서비스가 제공될 수 있다. 얼굴 인식 기술은 스마트 미러와 같은 장치를 통해 손쉽게 사용자 인증을 하고, 식별이 된 사용자에게 서비스를 제공할 수 있는 기술로 발전할 수 있다. 본 논문에서는 사용자 인증의 다양한 기법 중에서 얼굴인식 기술에 대한 조사 및 파이썬으로 작성된 얼굴인식 사례 소스 분석과 얼굴인식 기술을 활용한 다양한 서비스의 가능성을 제시하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.