본 논문은 온라인 얼굴 인식에서 전처리에 해당하는 얼굴 검출방법을 다룬다. 기존의 얼굴 검출 방법에서 에지 정보만을 이용한 얼굴 검출 방법과 컬러 정보를 이용한 얼굴 검출 방법의 단점을 상호 보완하기 위해 본 연구에서는 에지 정보와 컬러 정보를 결합한 얼굴 검출 방법 및 중심 영역 컬러 샘플링을 이용한 얼굴 검출방법을 개발하였다. 즉, 사람의 얼굴 영역이 비슷한 컬러를 가진 배경 영역과 결합(Merge)되는 것을 막기 위해 먼저 적응형 에지 검출 알고리즘을 수행하여 배경과 얼굴 영역을 각각의 고립 영역으로 분할한다. 제안된 적응형 소벨(Sobel) 에지 검출기는 배경 영역과 얼굴 영역의 경계에서 항상 에지가 발생할 수 있도록 에지가 많이 검출되고 입력 영상의 밝기 변화에 강인하다. 이로 인해 얼굴 영역이 하나의 영역이 아닌 여러 영역으로 분할되어 나타날 수 있으므로, 각 영역들의 컬러 정보를 이용해 병합한 후, 최종 얼굴 영역을 MBR(minimum bounding rectangle) 형태로 검출하였다. 이때 병합된 최종 얼굴 영역 후보가 너무 크거나 혹은 너무 작으면, 중심 영역 샘플링 방법을 이용해 다시 얼굴 영역을 검출한다. 총 2100장의 얼굴 영상 데이터베이스를 통해 실험한 결과 본 연구에서 제안한 방법을 사용해 96.3%의 높은 얼굴 영역 검출 성공률을 얻을 수 있었다.
얼굴인식기술은 컴퓨터비전 분야에서 중요한 역할을 담당하고 있다. 본 논문에서는, PCA와 SVM 기술을 사용하는 빠른 얼굴인식기술을 제안한다. 제안한 시스템에서는, 먼저 지역 히스토그램 분포를 분석하여 생성한 통계적 특성을 사용함으로써 얼굴가능영역을 필터링한다. 이 과정에서 대부분의 비얼굴 영역이 제거되기 때문에 탐지 과정의 처리속도가 향상된다. 다음으로는 PCA 특징 벡터가 생성되고, SVM 분류기를 사용하여 테스트 영상 내에 얼굴이 존재하는지를 탐지한다. 본 논문에서의 테스트 영상은 CMU 얼굴 데이터베이스를 사용하였으며, SVM의 학습을 위한 얼굴과 비얼굴 샘플들은 MIT 데이터 세트로부터 선택하였다. 얼굴탐지 실험결과, 제안한 방법에서 좋은 성능을 나타내었다.
본 논문에서는 영상내의 얼굴과 헤어의 컬러와 기하학적 특징을 이용하는 얼굴 검출 알고리즘을 제안한다. 컬러 특성을 이용하여 얼굴과 헤어의 후보영역을 검출 한 후, 이 영역들의 조도에 대한 편차를 이용하여 배경 영역을 제거한다. 그리고 얼굴과 헤어가 인접하는 기하학적 특징을 이용하여 여러 후보영역 중 실제 얼굴영역을 검출한다. 제안한 알고리즘 성능은 실험 영상에 대한 얼굴의 검출률 실험을 통하여 평가 되었으며, 실험결과 높은 검출률을 보였다.
본 논문에서는 자연 영상에서 피부색 색상과 채도를 기초로 얼굴영역을 추출하고 얼굴의 특징요소를 추출하는 방법을 제안하였다. 제안한 알고리즘은 조명보정과 얼굴 검출 과정으로 구성되었다. 조명 보정 과정에서는 조명변화에 대한 보정기능을 수행한다. 얼굴 검출 과정은 20개의 피부색 표본 영상에서 색상과 채도를 특징벡터로 사용, 입력영상과의 유클리디안 거리를 구하여 피부색 영역을 추출하였다. 추출된 얼굴 후보영역을 CMY칼라 모델에서 C요소로 눈을 검출하였고, YIQ 칼라 공간에서 Q요소로 입을 검출하였다. 추출된 얼굴 후보영역에서 일반적인 얼굴에 대한 지식을 기반으로 얼굴 영역을 검출하였다. 입력받은 10장의 자연 영상으로 실험한 결과 100%의 얼굴 검출율을 보였다.
In this paper, we present a new approach to detect and recognize human face in the image from vision camera equipped on the mobile robot platform. Due to the mobility of camera platform, obtained facial image is small and pose-various. For this condition, new algorithm should cope with these constraints and can detect and recognize face in nearly real time. In detection step, ‘coarse to fine’ detection strategy is used. Firstly, region boundary including face is roughly located by dual ellipse templates of facial color and on this region, the locations of three main facial features- two eyes and mouth-are estimated. For this, simplified facial feature maps using characteristic chrominance are made out and candidate pixels are segmented as eye or mouth pixels group. These candidate facial features are verified whether the length and orientation of feature pairs are suitable for face geometry. In recognition step, pseudo-convex hull area of gray face image is defined which area includes feature triangle connecting two eyes and mouth. And random lattice line set are composed and laid on this convex hull area, and then 2D appearance of this area is represented. From these procedures, facial information of detected face is obtained and face DB images are similarly processed for each person class. Based on facial information of these areas, distance measure of match of lattice lines is calculated and face image is recognized using this measure as a classifier. This proposed detection and recognition algorithms overcome the constraints of previous approach [15], make real-time face detection and recognition possible, and guarantee the correct recognition irregardless of some pose variation of face. The usefulness at mobile robot application is demonstrated.
많은 적용과 응용을 하더라도 얼굴 검출의 이미지 분석은 상당히 어렵다. 본 논문으로 불규칙한 조명의 영향으로 미검출되는 얼굴에 조명이 고루 분포되도록 얼굴영역을 검출하였으며, 기존의 정면 얼굴만을 검출하던 결과를 보완하였다. LAB 컬러조명보정으로 기존의 아다부스트 얼굴 검출에 비해 32% 향상된 얼굴검출 결과를 보였다. 입력된 두 영상의 차를 구해 Glassfire 라벨링을 실시했다. Area 임계치 값을 비교하여 임계값 이상의 면적이 되면 제안한 LCFD시스템 알고리즘인 RGB평활화와 LAB영상보정을 하였다. 이렇게 추출된 동작변환 영상을 대상으로 얼굴영역 검출을 실시하였다. 얼굴 검출에 필요한 특징을 추출하기 위해 AdaBoost알고리즘을 사용하였다. 본 논문으로 기울어진 얼굴영역과 멀리 떨어져 있는 얼굴영역, Multi-view 얼굴영역 검출까지 가능하였다. 또한 조명의 방향에 관계없이 높은 검출률을 보였으며, 사용자 인증 분야 등에 일반 PC만으로 적용 가능함이 입증되었다.
본 논문은 피부색 요소의 유클리디안거리를 계산 얼굴영역을 추출하고 얼굴의 특징요소를 추출하는 방법을 제안하였다. 제안한 알고리즘은 조명보정과 얼굴 검출 과정으로구성되었다. 조명보정 과정에서는 조명변화에 대한 보정기능을 수행한다. 얼굴 검출 과정은 20개의 피부색 표본영상에서 색상과 채도를 특징벡터로 사용, 입력영상과의 유클리디안 거리를 구하여 피부색 영역을 추출하였다. 추출된 얼굴 후보영역에서 CMY칼라 모델 C공간에서 눈을 검출 하였고, YIQ 칼라 모델 Q공간에서 입을 검출하였다. 추출된 얼굴 후보영역에서 일반적인 얼굴에 대한 지식을 기반으로 얼굴 영역을 검출하였다. 입력받은 40개의 정면 칼라 영상으로 실험한 결과 100%의 얼굴 검출율을 보였다.
For face recognition system, a face detector which can find exact face region from complex image is needed. Many face detection algorithms have been developed under the assumption that background of the source image is quite simple . this means that face region occupy more than a quarter of the area of the source image or the background is one-colored. Color-based face detection is fast but can't be applicable to the images of which the background color is similar to face color. And the algorithm using neural network needs so many non-face data for training and doesn't guarantee general performance. In this paper, A multi-scale, multi-face detection algorithm using PCA is suggested. This algorithm can find most multi-scaled faces contained in static images with small number of training data in reasonable time.
본 논문은 얼굴 검출 시스템에서 검출된 얼굴의 크기와 위치 정보를 이용한 얼굴 영역 안정화 알고리즘의 하드웨어 구현에 관한 것이다. adaboost 알고리즘을 이용한 얼굴 검출 시스템은 입력되는 영상을 이용하여 얼굴이라고 판단될 수 있는 템플릿 패턴, 얼굴 특징을 추출 하거나 미리 학습된 데이터와 비교하여 얼굴을 검출한다. 하지만 미세한 흔들림에도 얼굴 정보의 위치나 크기가 달라진다. 검출된 얼굴 영역의 안정화를 위해서 본 논문은 검출된 현재 얼굴 정보와 이전 프레임의 얼굴 정보를 기반으로 얼굴 영역의 흔들림을 줄이는 고주파 억제 필터, 얼굴 거리와 영역 비교, 얼굴 영역 확대-축소 연산을 이용한 얼굴 검출 안정화 하드웨어를 구현하여 실시간으로 피드백이 가능하도록 하였다.
Face detection and tracking technology on video sequence has developed indebted to commercialization of teleconference, telecommunication, front stage of surveillance system using face recognition, and video-phone applications. Complex background, color distortion by luminance effect and condition of luminance has hindered face recognition system. In this paper, we have proceeded to research of face recognition on video sequence. We extracted facial area using luminance and chrominance component on $YC_bC_r$ color space. After extracting facial area, we have developed the face recognition system applied to our improved algorithm that combined PCA and LDA. Our proposed algorithm has shown 92% recognition rate which is more accurate performance than previous methods that are applied to PCA, or combined PCA and LDA.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.