• 제목/요약/키워드: face area detection

검색결과 168건 처리시간 0.026초

컬러와 에지정보를 결합한 조명변화에 강인한 얼굴영역 검출방법 (A New Face Detection Method using Combined Features of Color and Edge under the illumination Variance)

  • 지은미;윤호섭;이상호
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권11호
    • /
    • pp.809-817
    • /
    • 2002
  • 본 논문은 온라인 얼굴 인식에서 전처리에 해당하는 얼굴 검출방법을 다룬다. 기존의 얼굴 검출 방법에서 에지 정보만을 이용한 얼굴 검출 방법과 컬러 정보를 이용한 얼굴 검출 방법의 단점을 상호 보완하기 위해 본 연구에서는 에지 정보와 컬러 정보를 결합한 얼굴 검출 방법 및 중심 영역 컬러 샘플링을 이용한 얼굴 검출방법을 개발하였다. 즉, 사람의 얼굴 영역이 비슷한 컬러를 가진 배경 영역과 결합(Merge)되는 것을 막기 위해 먼저 적응형 에지 검출 알고리즘을 수행하여 배경과 얼굴 영역을 각각의 고립 영역으로 분할한다. 제안된 적응형 소벨(Sobel) 에지 검출기는 배경 영역과 얼굴 영역의 경계에서 항상 에지가 발생할 수 있도록 에지가 많이 검출되고 입력 영상의 밝기 변화에 강인하다. 이로 인해 얼굴 영역이 하나의 영역이 아닌 여러 영역으로 분할되어 나타날 수 있으므로, 각 영역들의 컬러 정보를 이용해 병합한 후, 최종 얼굴 영역을 MBR(minimum bounding rectangle) 형태로 검출하였다. 이때 병합된 최종 얼굴 영역 후보가 너무 크거나 혹은 너무 작으면, 중심 영역 샘플링 방법을 이용해 다시 얼굴 영역을 검출한다. 총 2100장의 얼굴 영상 데이터베이스를 통해 실험한 결과 본 연구에서 제안한 방법을 사용해 96.3%의 높은 얼굴 영역 검출 성공률을 얻을 수 있었다.

PCA와 SVM에 기반하는 빠른 얼굴탐지 방법 (A Fast Method for Face Detection Based on PCA and SVM)

  • 하춘뢰;신현갑;박명철;하석운
    • 한국정보통신학회논문지
    • /
    • 제11권6호
    • /
    • pp.1129-1135
    • /
    • 2007
  • 얼굴인식기술은 컴퓨터비전 분야에서 중요한 역할을 담당하고 있다. 본 논문에서는, PCA와 SVM 기술을 사용하는 빠른 얼굴인식기술을 제안한다. 제안한 시스템에서는, 먼저 지역 히스토그램 분포를 분석하여 생성한 통계적 특성을 사용함으로써 얼굴가능영역을 필터링한다. 이 과정에서 대부분의 비얼굴 영역이 제거되기 때문에 탐지 과정의 처리속도가 향상된다. 다음으로는 PCA 특징 벡터가 생성되고, SVM 분류기를 사용하여 테스트 영상 내에 얼굴이 존재하는지를 탐지한다. 본 논문에서의 테스트 영상은 CMU 얼굴 데이터베이스를 사용하였으며, SVM의 학습을 위한 얼굴과 비얼굴 샘플들은 MIT 데이터 세트로부터 선택하였다. 얼굴탐지 실험결과, 제안한 방법에서 좋은 성능을 나타내었다.

헤어와 얼굴의 특징을 이용한 얼굴 검출 (Face Detection Using Features of Hair and Faces)

  • 황동국;이상주;최동진;박희정;전병민;이우람
    • 한국콘텐츠학회논문지
    • /
    • 제5권2호
    • /
    • pp.199-205
    • /
    • 2005
  • 본 논문에서는 영상내의 얼굴과 헤어의 컬러와 기하학적 특징을 이용하는 얼굴 검출 알고리즘을 제안한다. 컬러 특성을 이용하여 얼굴과 헤어의 후보영역을 검출 한 후, 이 영역들의 조도에 대한 편차를 이용하여 배경 영역을 제거한다. 그리고 얼굴과 헤어가 인접하는 기하학적 특징을 이용하여 여러 후보영역 중 실제 얼굴영역을 검출한다. 제안한 알고리즘 성능은 실험 영상에 대한 얼굴의 검출률 실험을 통하여 평가 되었으며, 실험결과 높은 검출률을 보였다.

  • PDF

자연 영상에서 얼굴영역 검출 알고리즘 (Face region detection algorithm of natural-image)

  • 이주신
    • 한국정보전자통신기술학회논문지
    • /
    • 제7권1호
    • /
    • pp.55-60
    • /
    • 2014
  • 본 논문에서는 자연 영상에서 피부색 색상과 채도를 기초로 얼굴영역을 추출하고 얼굴의 특징요소를 추출하는 방법을 제안하였다. 제안한 알고리즘은 조명보정과 얼굴 검출 과정으로 구성되었다. 조명 보정 과정에서는 조명변화에 대한 보정기능을 수행한다. 얼굴 검출 과정은 20개의 피부색 표본 영상에서 색상과 채도를 특징벡터로 사용, 입력영상과의 유클리디안 거리를 구하여 피부색 영역을 추출하였다. 추출된 얼굴 후보영역을 CMY칼라 모델에서 C요소로 눈을 검출하였고, YIQ 칼라 공간에서 Q요소로 입을 검출하였다. 추출된 얼굴 후보영역에서 일반적인 얼굴에 대한 지식을 기반으로 얼굴 영역을 검출하였다. 입력받은 10장의 자연 영상으로 실험한 결과 100%의 얼굴 검출율을 보였다.

Development of Pose-Invariant Face Recognition System for Mobile Robot Applications

  • Lee, Tai-Gun;Park, Sung-Kee;Kim, Mun-Sang;Park, Mig-Non
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.783-788
    • /
    • 2003
  • In this paper, we present a new approach to detect and recognize human face in the image from vision camera equipped on the mobile robot platform. Due to the mobility of camera platform, obtained facial image is small and pose-various. For this condition, new algorithm should cope with these constraints and can detect and recognize face in nearly real time. In detection step, ‘coarse to fine’ detection strategy is used. Firstly, region boundary including face is roughly located by dual ellipse templates of facial color and on this region, the locations of three main facial features- two eyes and mouth-are estimated. For this, simplified facial feature maps using characteristic chrominance are made out and candidate pixels are segmented as eye or mouth pixels group. These candidate facial features are verified whether the length and orientation of feature pairs are suitable for face geometry. In recognition step, pseudo-convex hull area of gray face image is defined which area includes feature triangle connecting two eyes and mouth. And random lattice line set are composed and laid on this convex hull area, and then 2D appearance of this area is represented. From these procedures, facial information of detected face is obtained and face DB images are similarly processed for each person class. Based on facial information of these areas, distance measure of match of lattice lines is calculated and face image is recognized using this measure as a classifier. This proposed detection and recognition algorithms overcome the constraints of previous approach [15], make real-time face detection and recognition possible, and guarantee the correct recognition irregardless of some pose variation of face. The usefulness at mobile robot application is demonstrated.

  • PDF

비정규 영상의 개선을 위한 LAB 컬러조명보정 (LAB color illumination revisions for the improvement of non-proper image)

  • 나종원
    • 한국항행학회논문지
    • /
    • 제14권2호
    • /
    • pp.191-197
    • /
    • 2010
  • 많은 적용과 응용을 하더라도 얼굴 검출의 이미지 분석은 상당히 어렵다. 본 논문으로 불규칙한 조명의 영향으로 미검출되는 얼굴에 조명이 고루 분포되도록 얼굴영역을 검출하였으며, 기존의 정면 얼굴만을 검출하던 결과를 보완하였다. LAB 컬러조명보정으로 기존의 아다부스트 얼굴 검출에 비해 32% 향상된 얼굴검출 결과를 보였다. 입력된 두 영상의 차를 구해 Glassfire 라벨링을 실시했다. Area 임계치 값을 비교하여 임계값 이상의 면적이 되면 제안한 LCFD시스템 알고리즘인 RGB평활화와 LAB영상보정을 하였다. 이렇게 추출된 동작변환 영상을 대상으로 얼굴영역 검출을 실시하였다. 얼굴 검출에 필요한 특징을 추출하기 위해 AdaBoost알고리즘을 사용하였다. 본 논문으로 기울어진 얼굴영역과 멀리 떨어져 있는 얼굴영역, Multi-view 얼굴영역 검출까지 가능하였다. 또한 조명의 방향에 관계없이 높은 검출률을 보였으며, 사용자 인증 분야 등에 일반 PC만으로 적용 가능함이 입증되었다.

칼라 영상에서 유클리디안 거리를 이용한 얼굴영역 검출 알고리즘 (Face Region Detection Algorithm using Euclidean Distance of Color-Image)

  • 정행섭;이주신
    • 한국정보전자통신기술학회논문지
    • /
    • 제2권3호
    • /
    • pp.79-86
    • /
    • 2009
  • 본 논문은 피부색 요소의 유클리디안거리를 계산 얼굴영역을 추출하고 얼굴의 특징요소를 추출하는 방법을 제안하였다. 제안한 알고리즘은 조명보정과 얼굴 검출 과정으로구성되었다. 조명보정 과정에서는 조명변화에 대한 보정기능을 수행한다. 얼굴 검출 과정은 20개의 피부색 표본영상에서 색상과 채도를 특징벡터로 사용, 입력영상과의 유클리디안 거리를 구하여 피부색 영역을 추출하였다. 추출된 얼굴 후보영역에서 CMY칼라 모델 C공간에서 눈을 검출 하였고, YIQ 칼라 모델 Q공간에서 입을 검출하였다. 추출된 얼굴 후보영역에서 일반적인 얼굴에 대한 지식을 기반으로 얼굴 영역을 검출하였다. 입력받은 40개의 정면 칼라 영상으로 실험한 결과 100%의 얼굴 검출율을 보였다.

  • PDF

Multi-Face Detection on static image using Principle Component Analysis

  • Choi, Hyun-Chul;Oh, Se-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.185-189
    • /
    • 2004
  • For face recognition system, a face detector which can find exact face region from complex image is needed. Many face detection algorithms have been developed under the assumption that background of the source image is quite simple . this means that face region occupy more than a quarter of the area of the source image or the background is one-colored. Color-based face detection is fast but can't be applicable to the images of which the background color is similar to face color. And the algorithm using neural network needs so many non-face data for training and doesn't guarantee general performance. In this paper, A multi-scale, multi-face detection algorithm using PCA is suggested. This algorithm can find most multi-scaled faces contained in static images with small number of training data in reasonable time.

  • PDF

검출된 얼굴 영역 안정화를 위한 하드웨어 구현 (Hardware Implementation for Stabilization of Detected Face Area)

  • 조호상;장경훈;강현중;강봉순
    • 융합신호처리학회논문지
    • /
    • 제13권2호
    • /
    • pp.77-82
    • /
    • 2012
  • 본 논문은 얼굴 검출 시스템에서 검출된 얼굴의 크기와 위치 정보를 이용한 얼굴 영역 안정화 알고리즘의 하드웨어 구현에 관한 것이다. adaboost 알고리즘을 이용한 얼굴 검출 시스템은 입력되는 영상을 이용하여 얼굴이라고 판단될 수 있는 템플릿 패턴, 얼굴 특징을 추출 하거나 미리 학습된 데이터와 비교하여 얼굴을 검출한다. 하지만 미세한 흔들림에도 얼굴 정보의 위치나 크기가 달라진다. 검출된 얼굴 영역의 안정화를 위해서 본 논문은 검출된 현재 얼굴 정보와 이전 프레임의 얼굴 정보를 기반으로 얼굴 영역의 흔들림을 줄이는 고주파 억제 필터, 얼굴 거리와 영역 비교, 얼굴 영역 확대-축소 연산을 이용한 얼굴 검출 안정화 하드웨어를 구현하여 실시간으로 피드백이 가능하도록 하였다.

비디오 영상 기반의 얼굴 검색 (Face Detection based on Video Sequence)

  • 안효창;이상범
    • 반도체디스플레이기술학회지
    • /
    • 제7권3호
    • /
    • pp.45-49
    • /
    • 2008
  • Face detection and tracking technology on video sequence has developed indebted to commercialization of teleconference, telecommunication, front stage of surveillance system using face recognition, and video-phone applications. Complex background, color distortion by luminance effect and condition of luminance has hindered face recognition system. In this paper, we have proceeded to research of face recognition on video sequence. We extracted facial area using luminance and chrominance component on $YC_bC_r$ color space. After extracting facial area, we have developed the face recognition system applied to our improved algorithm that combined PCA and LDA. Our proposed algorithm has shown 92% recognition rate which is more accurate performance than previous methods that are applied to PCA, or combined PCA and LDA.

  • PDF