• Title/Summary/Keyword: fabricated

Search Result 20,163, Processing Time 0.048 seconds

Fundamental study on sound absorption of a dental hand piece using micro-porous EPP substrate processed by UV laser (UV 레이저응용 마이크로 다공성 EPP 기판의 치과용 핸드피스 흡음성능에 관한 기초연구)

  • You, Dong-Bin;Shin, Myung-Ho;Byun, Hyo-Jin;Choi, Do-Jung;Sung, Kuo-Won;Ma, Yong-Won;Shin, Bo-Sung
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.5
    • /
    • pp.158-164
    • /
    • 2019
  • Recently many studies to reduce the noise of dental hand piece which generate inevitably mechanical sound to offend to the ear of a patient have been spotlighted. Generally, methods of adding a sound absorbing material inside the exhaust valve, air pump of machine or automobile are widely reported as optimal way to reduce the mechanical noise. In this paper we studied a new UV laser aided manufacturing of micro-porous structure of EPP substrate and applied dental hand piece to improve the efficiency of sound absorption. A lot of micro-sized pores were fabricated with UV laser processing on the surface of sliced EPP substrate. From fundamental experiments, more high-performance of micro-porous EPP substrate has finally demonstrated for sound-absorbing structure of the micro muffler inside dental hand piece, which actually has the excellent potential to apply a lot of potable machine.

The Effect of Heat Treatment Condition on the Mechanical Properties of oxi-PAN Based Carbon Fiber (Oxi-PAN 섬유를 기반으로 제조한 탄소섬유의 탄화 조건에 따른 구조 및 물성의 변화)

  • Choi, Kyeong Hun;Heo, So Jeong;Hwang, Sang-Ha;Bae, Soo Bin;Lee, Hyung Ik;Chae, Han Gi
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.385-391
    • /
    • 2018
  • In this study, carbon fibers were fabricated via carbonization of oxidized polyacrylonitrile (oxi-PAN) under different carbonization conditions. Carbonization of oxi-PAN fiber was performed under four different temperature (1300, 1400, 1500, $1600^{\circ}C$) with four different fiber tensions (14, 25, 35, 45 MPa). Effect of carbonization process on the structural development and mechanical properties of carbon fiber were characterized by single filament fiber tensile test and Raman spectroscopy. A clear correlation exists between the Raman spectrum and the tensile modulus of carbon fiber and effect of carbonization temperature on the tensile modulus showed increased tendency only at higher fiber tension (${\geq}25MPa$) while tensile strength showed decreased or random tendency. Therefore, it may be concluded that the optimization of carbonization temperature of oxi-PAN fiber also requires optimization of fiber tension.

Reinforced Anion-exchange Membranes Employing Porous PTFE Support for All-vanadium Redox Flow Battery Application (전 바나듐 레독스 흐름전지 응용을 위한 다공성 PTFE 지지체를 사용한 강화 음이온교환막)

  • Moon, Ha-Nuel;Song, Hyeon-Bee;Kang, Moon-Sung
    • Membrane Journal
    • /
    • v.31 no.5
    • /
    • pp.351-362
    • /
    • 2021
  • All-vanadium redox flow battery (VRFB) is one of the promising high-capacity energy storage technologies. The ion-exchange membrane (IEM) is a key component influencing the charge-discharge performance and durability of VRFB. In this study, a pore-filled anion-exchange membrane (PFAEM) was fabricated by filling the pores of porous polytetrafluoroethylene (PTFE) support with excellent physical and chemical stability to compensate for the shortcomings of the existing hydrocarbon-based IEMs. The use of a thin porous PTFE support significantly lowered the electrical resistance, and the use of the PTFE support and the introduction of a fluorine moiety into the filling ionomer significantly improved the oxidation stability of the membrane. As a result of the evaluation of the charge-discharge performance, the higher the current efficiency was seen by increasing the fluorine content in the PFAEM, and the superior voltage and energy efficiencies were shown owing to the lower electrical resistance compared to the commercial membrane. In addition, it was confirmed that the use of a hydrophobic PTFE support is more preferable in terms of oxidation stability and charge-discharge performance.

Evaluation for Ultimate Flexural Strength of Steel Composite Girder with High Strength Concrete (고강도 콘크리트 강합성 거더의 극한휨강도 실험 평가)

  • Kim, Woon Hak;Lee, Juwon;Lee, Seokmin
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.796-805
    • /
    • 2020
  • Purpose: A static loading test was performed to evaluate the ultimate flexural strength of a girder in which 80MPa high-strength concrete was synthesized on the compressive flange of the I-shape steel girder. Method: This test is designed and fabricated two types of specimens with different shear-connection specifications, and evaluated their ultimate flexural behavior until reaching the extreme event limit states. In addition, the ultimate strength was evaluated by comparing the test results and the results of the strain compatibility method. Result: By confirming the displacement within 0.02mm as a result of the relative slip measurement, it was verified that the two specimens secured perfect bonding. Therefore, the difference in the shear specification does not have a great effect on the stiffness, and if the specimens are completely synthesized, there is no difference in the behavior until it reaches the extreme-event limit states. Conclusion: The girder to be tested has a working load within the elastic range and meets the usability requirements for allowable deflection. Therefore, even if a part of the casing is subjected to the tensile force at the level of cracking, the deck will first reach the compression failure due to the role of the reinforcing bar.

Manufacturing of Ti-48Al-2Cr-2Nb Alloy Turbocharger Turbine Wheel by Vacuum Centrifugal Casting (진공 원심 주조를 이용한 Ti-48Al-2Cr-2Nb 합금 터보차저 터빈휠 제작)

  • Pak, Sung Joon;Ju, Heongkyu
    • Journal of Korea Foundry Society
    • /
    • v.41 no.2
    • /
    • pp.127-131
    • /
    • 2021
  • Based on its good compatibility with high-temperature environments, the Ti-48Al-2Cr-2Nb alloy is used for high-temperature materials of industrial equipment. In this study, a Ti-48Al-2Cr-2Nb alloy turbocharger turbine wheel was fabricated by a vacuum centrifugal casting method. The conditions that prevent misrun defects of the turbocharger turbine wheel blade from centrifugal casting using alumina molds were investigated. The microstructure of the alloy prepared by vacuum centrifugal casting was studied by means of optical microscopy (OM), with a micro-Vickers hardness analyzer (HV), by X-ray diffraction (XRD) and by SEM-EDS. The HV and SEM-EDS examinations of the as-cast Ti-48Al-2Cr-2Nb alloy showed that the thickness of the oxide layer (α-case) was typically less than 50 ㎛. At a high preheating temperature of 1,100℃, a moderate RPM of 260, and with an alumina mold with a large gate size, there were almost no misrun defects. Therefore, it was confirmed that a Ti-48Al-2Cr-2Nb alloy turbocharger turbine wheel with fewer misrun defects could be achieved through a high preheating temperature, a moderate RPM, a large gate size and an alumina mold to suppress the formation of alpha-case components.

A Study on the Stability of Using Alkali Solution Desalination on Gilt Plated Silver-Iron Artifacts (알칼리 수용액을 이용한 출토 철지금은장관정의 탈염처리 적용성 평가)

  • Park, Jun Hyeon;Bae, Go Woon;Chung, Kwang Yong
    • Journal of Conservation Science
    • /
    • v.37 no.2
    • /
    • pp.179-189
    • /
    • 2021
  • In this study, the research objects are gilt plated silver-iron nails excavated from the west of the tombs in Neungsan-ri, Buyeo. A gilt plated silver-iron nail was fabricated by combining silver and iron via heating and then gilding amalgam on top of this combination, demonstrating that this ancient artifact that can be replicated using current technology. Since the metal (Au, Ag) surface of these gilt plated artifacts are covered with iron oxide, which slips into the cracks and scratches of the artifacts as well, desalination is essential. Based on the results of the preliminary experiment, the research objects were classified into grades A, B, and C, according to the degree of corrosion and then desalinated using an alkali solution (NaOH, Sodium Sesquicarbonate of 0.1 M) at 60℃. The results demonstrate that the more serious is the degree of corrosion, the more is the amount of Cl- detected. Further, more Cl- was released when NaOH was used than when sodium sesquicarbonate was used, for all grades except Grade A. Furthermore, the more serious is the degree of corrosion, the longer is the desalination period and the reaction with NaOH for all grades except Grade A. A comparison of the Fe composition of the surface before and after desalination shows that Fe composition is the use of NaOH resulted in a smaller increase compared with the use of sodium sesquicarbonate, for all grades except Grade B. However, four of the nails were damaged owing to NaOH (Grade B 3ea, Grade C 1ea) during desalination. Thus, Cl- ions are more stably released when sodium sesquicarbonate is used than when NaOH is used.

Analysis of the Necessary Mechanical Properties of Embroiderable Conductive Yarns for Measuring Pressure and Stretch Textile Sensor Electrodes (생체 신호 측정 압력 및 인장 직물 센서 전극용 자수가 가능한 전도사의 필요 물성 분석)

  • Kim, Sang-Un;Choi, Seung-O;Kim, Joo-Yong
    • Science of Emotion and Sensibility
    • /
    • v.24 no.2
    • /
    • pp.49-56
    • /
    • 2021
  • In this study, we investigated the necessary mechanical properties of conductive multifilament yarns for fabricating the electrodes of biosignal measurement pressure and stretch textile sensors using embroidery. When electrodes and circuits for smart wearable products are produced through the embroidery process using conductive multifilament yarns, unnecessary material loss is minimized, and complex electrode shapes or circuit designs can be produced without additional processes using a computer embroidering machine. However, because ordinary missionary threads cannot overcome the stress in the embroidery process and yarn cutting occurs, herein, we analyzed the S-S curve, thickness, and twist structure, which are three types of silver-coated multifilament yarns, and measured the stress in the thread of the embroidery simultaneously. Thus, the required mechanical properties of the yarns in the embroidery process were analyzed. In the actual sample production, cutting occurred in silver-coated multifilament rather than silver-coated polyamide/polyester, which showed the lowest S-S curve. In the embroidery process, the twist was unwound through repetitive vertical movement. Further, we fabricated a piezoresistive pressure/tension sensor to measure gauge factor, which is an index for measuring biological signals. We confirmed that the sensor can be applied to the fabrication of embroidery electrodes, which is an important process in the mass production of smart wearable products.

Fabrication and Evaluation of High Mg-content ECO-Almag6~9 Extruded Products by using Oxidation-resistant Mg Mother Alloy (내산화성 Mg 모합금을 이용한 고(高) Mg 함유 ECO-Almag6~9 합금 압출재의 제조 및 특성평가)

  • Kim, Bong-Hwan;Yoon, Young-Ok;Kim, Shae-Kwang
    • Journal of Korea Foundry Society
    • /
    • v.41 no.3
    • /
    • pp.252-259
    • /
    • 2021
  • The magnesium is one of the important alloying elements in the conventional aluminum alloys. The addition of magnesium to aluminum is well known to increase the mechanical strength of the aluminum without the trade-off of the decreased elongation. However, the content of magnesium in aluminum alloys has been limited to be lower than about 5wt.% because of the high oxidation tendency of magnesium element during the manufacturing processes such as casting, hot-forming and post heat-treatments, which can deteriorate the quality and properties of the final products. In this study, new 'ECO-Almag6~9' (containing 6~9wt%Mg) alloys were investigated to be made of the ECO-Mg master alloy, which has been invented to reduce the oxidation tendency of itself. It was successfully demonstrated that ECO-Almag6~9 alloys can be fabricated through the mass-production facilities of DC casting and extrusion routes without the problems of magnesium oxidation. In addition, it was confirmed that the strength and ductility were simultaneously improved due to the addition of high magnesium contents.

Development of High-Durability Ceramic Hollow Fiber and Performance Evaluation of Contact Membrane Process according to Pressure Conditions (고내구성 세라믹 중공사 개발과 압력 조건에 따른 접촉막 공정의 특성 평가)

  • Lee, Seung Hwan;Jeong, Byeong Jun;Shin, Min Chang;Zhuang, Xuelong;Jung, Jiwon;Lee, Yeon Jun;Won, Dongyeon;Park, Jung Hoon
    • Membrane Journal
    • /
    • v.30 no.6
    • /
    • pp.443-449
    • /
    • 2020
  • In this study, CO2 separation experiment was performed on a CH4/CO2 mixed gas using a ceramic hollow fiber membrane contactor module (HFMC). In order to fabricate high-durability HFMC, a high-durability hollow fiber membrane was prepared and evaluated. HFMC was fabricated using the prepared hollow fiber membrane, and the experiment used a mixture of CH4/CO2 (30% CO2, CH4 balance) and monoethanolamine (MEA). During HFMC operation, the effect of gas and absorbent pressure on the CO2 removal efficiency was evaluated. The CO2 removal efficiency increased as the gas pressure increased, and the CO2 absorption flux also showed a tendency to increase with the liquid flow rate. In addition, when the CO2 absorption rate was less than 40%, LTS-1, a counter-current form where the absorbent enters from the bottom, has higher CO2 removal performance than LTS-2, a countercurrent form in which the absorbent enters from the top. and when the absorption rate was 40% or higher, LTS-2 had higher performance than LTS-1.

The Experimental Assessment of Influence Factors on KLS-1 Microwave Sintering (한국형 인공월면토(KLS-1) 마이크로파 소결에 미치는 영향인자에 관한 실험적 연구)

  • Jin, Hyunwoo;Lee, Jangguen;Ryu, Byung Hyun;Shin, Hyu-Soung;Kim, Young-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.2
    • /
    • pp.5-17
    • /
    • 2021
  • The Moon has been an attractive planet as an outpost for deep space exploration since He-3 and water ice which can be used as energy resources were discovered. In-Situ Resource Utilization (ISRU) construction material fabrication method is required for sustainable space planet exploration. In this paper, the possibility of microwave sintering technology for construction material fabrication was evaluated using lunar regolith that can be easily collected from the Moon surface. Experimental assessment of the influence factors on microwave sintering was conducted using a hybrid sintering system for efficient processing. The heat distribution in the furnace was observed using thermal paper that is coated with a material formulated to change color when exposed to heat. Based on this result, sintered cylindrical KLS-1s with a diameter of 1 cm and a height of 2 cm were fabricated. Densities were measured for the sintered KLS-1s under rotating turntable conditions that have an effect of microwave dispersion. The more dielectrics were arranged, the more microwaves were dispersed reducing the heat concentration, and thus a uniformity of sintered KLS-1s was enhanced.