• Title/Summary/Keyword: fMRI (functional magnetic resonance imaging)

Search Result 146, Processing Time 0.028 seconds

Functional MR Imaging Using BOLD Technique in Patients with Brain Tumors (뇌종양 환자에서 BOLD 기법을 이용한 기능적 자기공명영상)

  • Kim Jeong;Yim Nam-Yeol;Shin Sang-Soo;Lim Hyo-Soon;Yoon Woong;Chung Tae-Woong;Jeong Yong-Yeon;Jeong Gwang-Woo;Park Jin-Gyoon;Kang Heoung-Keun;Jung Shin;Kang Sam-Suk;Seo Jeong-Jin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.7 no.2
    • /
    • pp.124-131
    • /
    • 2003
  • Purpose : To reveal clinical usefulness of functional MRI (fMRI) using sensorymotor and language stimuli for demonstrating anatomic relationship between sensorimotor or language cortices and lesions in the planning of brain tumor surgery. Materials and Methods : This study included 12 right-handed patients with brain tumors in or around sensorimotor or language cortices. Eleven patients were evaluated with primary motor and sensory stimuli. Of these patients, six patients were also evaluated with language stimuli. One patient was evaluated with language stimuli only. For fMR imaging, a 1.5T scanner was used and the EPI BOLD technique was employed. For postprocessing image, the SPM99 program and a program made by our department was utilized. We evaluated whether sensorimotor and language stimuli activate sensorimotor and language cortices. And also, clinical efficacy of revealing anatomic relationship between cerebral cortices and lesions for planning neurosurgical operation were evaluated. Finally, we compared post-operative neurologic function with pre-operative neurologic function in same patients. Results : The fMRI examination was successful in identifying the functional cortices and depicting anatomic relationship between functional cortices and lesions in all patients. In nine patients of 11 patients with identified sensorimotor cortices, postoperative grade of manual motor test was not changed, compared with preoperative grade. Whereas postoperative improved than preoperative grade in one patient of remaining two patients, postoperative aggravated than preoperative grade in the other. This result was due to atherosclerotic lacunar infarction, regardless of tumor resection. Postoperative deficit of language function was not found in seven patients with identified language cortices. Conclusion : fMRI could be a helpful method for determining the best approach to neurosurgical treatment in patients with brain tumors in or around sensorimotor or language cortices.

  • PDF

Voxel-wise Mapping of Functional Magnetic Resonance Imaging in Impression Formation

  • Jeesung Ahn;Yoonjin Nah;Inwhan Ko;Sanghoon Han
    • Science of Emotion and Sensibility
    • /
    • v.25 no.4
    • /
    • pp.77-94
    • /
    • 2022
  • Social interactions often involve encountering inconsistent information about social others. We conducted a functional magnetic resonance imaging (fMRI) study to comprehensively investigate voxel-wise temporal dynamics showing how impressions are anchored and/or adjusted in response to inconsistent social information. The participants performed a social impression task inside an fMRI scanner in which they were shown a male face, together with a series of four adjectives that described the depicted person's personality traits, successively presented beneath the image of the face. Participants were asked to rate their impressions of the person at the end of each trial on a scale of 1 to 8 (where 1 is most negative and 8 is most positive). We established two hypothetical models that represented two temporal patterns of voxel activity: Model 1 featured decreasing patterns of activity towards the end of each trial, anchoring impressions to initially presented information, and Model 2 showed increasing patterns of activity toward the end of each trial, where impressions were being adjusted using new and inconsistent information. Our data-driven model fitting analyses showed that the temporal activity patterns of voxels within the ventral anterior cingulate cortex, medial orbitofrontal cortex, posterior cingulate cortex, amygdala, and fusiform gyrus fit Model 1 (i.e., they were more involved in anchoring first impressions) better than they did Model 2 (i.e., showing impression adjustment). Conversely, voxel-wise neural activity within dorsal ACC and lateral OFC fit Model 2 better than it did Model 1, as it was more likely to be involved in processing new, inconsistent information and adjusting impressions in response. Our novel approach to model fitting analysis replicated previous impression-related neuroscientific findings, furthering the understanding of neural and temporal dynamics of impression processing, particularly with reference to functionally segmenting each region of interest based on relative involvement in impression anchoring as opposed to adjustment.

Metabolic Changes on Occipital Cortex during Visual Stimulation with Functional MR Imaging and H MR Spectroscopy (기능적 자기공명영상법과 양성자 가지공명분광법을 이용한 시각자극에 의한 후두염 피질의 대사물질 변화)

  • Kim, Tae;Suh, Tae-Suk;Choe, Bo-Young;Kim, Sung-Eun;Lee, Heung-Kyu;Shinn, Kyung-Sub
    • Investigative Magnetic Resonance Imaging
    • /
    • v.3 no.1
    • /
    • pp.47-52
    • /
    • 1999
  • Purpose : The purpose of this study was aimed to evaluate the BOLD(blood oxygen level dependent) contrast fMRI(functional MR imaging) in the occipital lobe and to compare with the metabolic changes based on H MRS (MR spectroscopy) and MRSI (MR spectroscopic imaging) before and after visual stimulation Materials and Methods : Healthy human volunteers (eight males and two females with 24-30 year age) participated in this study. All of the BOLD fMRI were acquired on a 1.5T MR with EPI during supervised visual stimulation in the occipital lobe. The red flicker with 8Hz was used for visual stimulation. After imaging acquisition, the MR images were transferred into unix workstation and processed with acquired from the same location based on the activation map. MRSI (magnetic resonance spectroscopic imaging) was also acquired to analyze the lactate changes before and after stimulation. Results : The activation maps were successfully produced by BOLD effect due to visual stimulation. NAA (N-acetyle aspartate)/Cr (creatine) ratio varied only from $1.79{\pm}0.28{\;}to{\;}1.88{\pm}0.20$ in activation area before and after stimulation. However, the signal intensity of lactate was elevated $9.48{\pm}4.38$ times higher than before activation. Lactate metabolite images were consistent with the activation maps. Conclusion : The BOLD contrast fMRI is enough sensitive to detect the activated area in human brain during the visual stimulation. Lactate metabolite map presents the evidence of lactate elevation on the same area of activation.

  • PDF

Cortical Activation by Transcranial Direct Current Stimulation and Functional Electrical Stimulation in Normal Subjects: 2 Case Studies (정상 성인에서 경두개 직류 전류자극과 기능적 전기자극에 의한 대뇌피질의 활성화: 사례연구)

  • Kwon, Yong-Hyun;Kwon, Jung-Won;Park, Sang-Young;Jang, Sung-Ho
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.1
    • /
    • pp.77-82
    • /
    • 2011
  • Purpose: Recently, many studies have demonstrated that application of external stimulation can modulate cortical excitability of the human brain. We attempted to observe cortical excitability using functional magnetic resonance imaging (fMRI) during the application of transcranial direct current stimulation (tDCS) or functional electrical stimulation (FES). Methods: We recruited two healthy subjects without a history of neurological or psychiatric problems. fMRI scanning was done during? each constant anodal tDCS and FES session, and each session was repeated three times. The tDCS session consisted of three successive phases (resting phase: 60sec dummy cycle: 10sec tDCS phase: 60sec). The FES session involved stimulation of wrist extensor muscles over two successive phase (resting phase: 15sec FES phase: 15sec). Results: The average map of the tDCS and FES analyses showed that the primary sensory-motor cortex area was activated in all subjects. Conclusion: Our findings show that cortical activation can be induced by constant anodal tDCS and FES. They suggest that the above stimuli have the potential for facilitating brain plasticity and modulating neural excitability if applied as specific therapeutic interventions for brain injured patients.

Altered Motor Control in Patients With Neck Pain and Prospective Research Work (경부통증 환자의 변형된 운동조절 특성 분석과 향후 활용 방안)

  • Lee, Min-young;Yoon, Bum-chul
    • Physical Therapy Korea
    • /
    • v.23 no.2
    • /
    • pp.20-34
    • /
    • 2016
  • Background: It is necessary to find and develop the effective way of intervention for patients with neck pain, since the neck pain is becoming increasingly common throughout the world. To identify the altered motor control in patient with neck pain would be informative to find and develop the effective way of intervention. Objects: The aim of this study was to review literature regarding the altered motor control in patients with neck pain, measured by using surface electromyography (sEMG), ultrasonography, and functional magnetic resonance imaging (fMRI), and to suggest prospective research work on neck pain. Methods: Case-control (neck pain/healthy) studies published between 2004 and 2015 that investigated neck muscle activation, thickness, cross-sectional area, and fat infiltrate were searched in Scopus, PubMed, and ScienceDirect. Twenty-eight articles were included in this study. Results: sEMG, ultrasonography, and fMRI were used complementarily to investigate the altered superficial and deep neck muscle activation, thickness, cross-sectional area, and fat infiltrate in patients with neck pain. They showed the following altered motor control when compared retrospectively with healthy subjects or during specific functional tasks: (1) increased superficial muscle activation, (2) lesser deep muscle thickness, (3) smaller cross-sectional area of the deep muscle, and (4) greater fat infiltrate in deep muscles. In particular, among the women, the office workers showed higher muscle activation of superficial neck muscles during functional tasks, although they did not have neck pain, than those who were not office workers. Conclusion: Studies revealed that patients with neck pain showed an altered motor control when compared with healthy subjects by using various assessment modalities. Understanding this phenomenon would help researchers design an effective intervention for alleviating neck pain or to evaluate the effectiveness of the intervention. In addition, we recommend that female office workers take measures to care for their necks before developing neck pain.

The Evaluation of Cerebral Executive Function Using Functional MRI (기능적 자기공명영상기법을 이용한 대뇌의 집행기능 평가)

  • Eun, Sung Jong;Gook, Jin Seon;Kim, Jeong Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.5
    • /
    • pp.305-311
    • /
    • 2013
  • This study involves an experiment using functional magnetic resonance imaging(fMRI) to delineate brain activation for execution functional performance. Participates to this experiment of the normal adult (man 4, woman 6) of 10 people, is not inserts the metal all closed phobia and 24.5 year-old average ages which the operating surgeon experience which are not they were. The subject for a functional MRI experiment word -color test prosecuting attorney subject rightly at magnetic pole presentation time of 30 first editions and after presenting, uses SPM 99 programs and the image realignment, after executing a standardization (nomalization), a difference which the signal burglar considers the timely order as lattice does, pixel each image will count there probably is, in order to examine rest and active crossroad dividing independence sample t-test (p<.05). Overlapped in this standard anatomic image and got a brain activation image from level of significance 95%. With functional MRI resultant execution function inside being relation, the prefrontal lobe, anterior cingulate gyrus, parietal lobe, orbitofrontal gyrus, temporal lobe, parietal lobe was activated. The execution function promotes a recovery major role from occupational therapy, understanding about the damage mechanism is important. When confirms the brain active area which accomplishes an execution function brain plasticity develops the cognitive therapeutic method which is effective increases usefully very, will be used.

The Roles of Frontal Cortex in Primary Insomnia : Findings from Functional Magnetic Resonance Imaging Studies (일차성 불면증에서 전두엽의 역할 : 기능적 자기공명영상 연구)

  • Kim, Bori;Park, Su Hyun;Cho, Han Byul;Kim, Jungyoon
    • Korean Journal of Biological Psychiatry
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • Insomnia is a common sleep-related symptom which occurs in many populations, however, the neural mechanism underlying insomnia is not yet known. The hyperarousal model explains the neural mechanism of insomnia to some extent, and the frontal cortex dysfunction has been known to be related to primary insomnia. In this review, we discuss studies that applied resting state and/or task-related functional magnetic resonance imaging to demonstrate the deficits/dysfunctions of functional activation and network in primary insomnia. Empirical evidence of the hyperarousal model and proposed relation between the frontal cortex and other brain regions in primary insomnia are examined. Reviewing these studies could provide critical insights regarding the pathophysiology, brain network and cerebral activation in insomnia and the development of novel methodologies for the diagnosis and treatment of insomnia.

  • PDF

Multimodal neuroimaging in presurgical evaluation of childhood epilepsy

  • Jung, Da-Eun;Lee, Joon-Soo
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.8
    • /
    • pp.779-785
    • /
    • 2010
  • In pre-surgical evaluation of pediatric epilepsy, the combined use of multiple imaging modalities for precise localization of the epileptogenic focus is a worthwhile endeavor. Advanced neuroimaging by high field Magnetic resonance imaging (MRI), diffusion tensor images, and MR spectroscopy have the potential to identify subtle lesions. $^{18}F$-FDG positron emission tomography and single photon emission tomography provide visualization of metabolic alterations of the brain in the ictal and interictal states. These techniques may have localizing value for patients which exhibit normal MRI scans. Functional MRI is helpful for non-invasively identifying areas of eloquent cortex. These advances are improving our ability to noninvasively detect epileptogenic foci which have gone undetected in the past and whose accurate localization is crucial for a favorable outcome following surgical resection.

Estimation of Reward Probability in the Fronto-parietal Functional Network: An fMRI Study

  • Shin, Yeonsoon;Kim, Hye-young;Min, Seokyoung;Han, Sanghoon
    • Science of Emotion and Sensibility
    • /
    • v.20 no.4
    • /
    • pp.101-112
    • /
    • 2017
  • We investigated the neural representation of reward probability recognition and its neural connectivity with other regions of the brain. Using functional magnetic resonance imaging (fMRI), we used a simple guessing task with different probabilities of obtaining rewards across trials to assay local and global regions processing reward probability. The results of whole brain analysis demonstrated that lateral prefrontal cortex, inferior parietal lobe, and postcentral gyrus were activated during probability-based decision making. Specifically, the higher the expected value was, the more these regions were activated. Fronto-parietal connectivity, comprising inferior parietal regions and right lateral prefrontal cortex, conjointly engaged during high reward probability recognition compared to low reward condition, regardless of whether the reward information was extrinsically presented. Finally, the result of a regression analysis identified that cortico-subcortical connectivity was strengthened during the high reward anticipation for the subjects with higher cognitive impulsivity. Our findings demonstrate that interregional functional involvement is involved in valuation based on reward probability and that personality trait such as cognitive impulsivity plays a role in modulating the connectivity among different brain regions.

Usefulness of Functional MRI for the study of concentration sheet (Functional MRI를 이용한 학습집중력 향상 시트 개발)

  • Kim, Chang-Gyu
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.13-17
    • /
    • 2009
  • In this thesis, we made a sheet to improve the concentration of study. To demonstrate the improvement in the concentration of study, we obtained functional magnetic resonance imaging (fMRI), which has superior time resolution and measures brain noninvasively by using intrinsic contrast agent. As a result of Brainwave measurement, we could verify the blood flow's activate in the nearby frontal lobe related to memory process and noticeable ratio change in absolute alpha wave and beta wave after the analysis of Brainwave measurement. fMRI ascertains the physiological function of the brain and is being used to prevent the trouble medically that can be caused before and after the operation. For the visibility of cranial nerve network, many researches will be carried out to develope the product which is related to brain like concentration of study.

  • PDF