• Title/Summary/Keyword: f-biharmonic integral submanifolds

Search Result 2, Processing Time 0.015 seconds

f-BIHARMONIC SUBMANIFOLDS AND f-BIHARMONIC INTEGRAL SUBMANIFOLDS IN LOCALLY CONFORMAL ALMOST COSYMPLECTIC SPACE FORMS

  • Aslam, Mohd;Karaca, Fatma;Siddiqui, Aliya Naaz
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.595-606
    • /
    • 2022
  • In this paper, we have studied f-biharmonic submanifolds in locally conformal almost cosymplectic space forms and have derived condition on second fundamental form for f-biharmonic submanifolds. Also, we have discussed its integral submanifolds in locally conformal almost cosymplectic space forms.

SOME RESULTS OF f-BIHARMONIC MAPS INTO A RIEMANNIAN MANIFOLD OF NON-POSITIVE SECTIONAL CURVATURE

  • He, Guoqing;Li, Jing;Zhao, Peibiao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.2091-2106
    • /
    • 2017
  • The authors investigate f-biharmonic maps u : (M, g) ${\rightarrow}$ (N, h) from a Riemannian manifold into a Riemannian manifold with non-positive sectional curvature, and derive that if $\int_{M}f^p{\mid}{\tau}(u){\mid}^pdv_g$ < ${\infty}$, $\int_{M}{\mid}{\tau}(u){\mid}^2dv_g$ < ${\infty}$ and $\int_{M}{\mid}du{\mid}^2dv_g$ < ${\infty}$, then u is harmonic. When u is an isometric immersion, the authors also get that if u satisfies some integral conditions, then it is minimal. These results give an affirmative partial answer to conjecture 4 (generalized Chen's conjecture for f-biharmonic submanifolds).