• Title/Summary/Keyword: eye-position detection

Search Result 49, Processing Time 0.025 seconds

A Tracking of Head Movement for Stereophonic 3-D Sound (스테레오 입체음향을 위한 머리 움직임 추정)

  • Kim Hyun-Tae;Lee Kwang-Eui;Park Jang-Sik
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.11
    • /
    • pp.1421-1431
    • /
    • 2005
  • There are two methods in 3-D sound reproduction: a surround system, like 3.1 channel method and a binaural system using 2-channel method. The binaural system utilizes the sound localization principle of a human using two ears. Generally, a crosstalk between each channel of 2-channel loudspeaker system should be canceled to produce a natural 3-D sound. To solve this problem, it is necessary to trace a head movement. In this paper, we propose a new algorithm to correctly trace the head movement of a listener. The Proposed algorithm is based on the detection of face and eye. The face detection uses the intensity of an image and the position of eyes is detected by a mathematical morphology. When the head of the listener moves, length of borderline between face area and eyes may change. We use this information to the tracking of head movement. A computer simulation results show That head movement is effectively estimated within +10 margin of error using the proposed algorithm.

  • PDF

Detection of Face Direction by Using Inter-Frame Difference

  • Jang, Bongseog;Bae, Sang-Hyun
    • Journal of Integrative Natural Science
    • /
    • v.9 no.2
    • /
    • pp.155-160
    • /
    • 2016
  • Applying image processing techniques to education, the face of the learner is photographed, and expression and movement are detected from video, and the system which estimates degree of concentration of the learner is developed. For one learner, the measuring system is designed in terms of estimating a degree of concentration from direction of line of learner's sight and condition of the eye. In case of multiple learners, it must need to measure each concentration level of all learners in the classroom. But it is inefficient because one camera per each learner is required. In this paper, position in the face region is estimated from video which photographs the learner in the class by the difference between frames within the motion direction. And the system which detects the face direction by the face part detection by template matching is proposed. From the result of the difference between frames in the first image of the video, frontal face detection by Viola-Jones method is performed. Also the direction of the motion which arose in the face region is estimated with the migration length and the face region is tracked. Then the face parts are detected to tracking. Finally, the direction of the face is estimated from the result of face tracking and face parts detection.

Eye Gaze toy Human Computer Interaction (눈동자의 움직임을 이용한 휴먼 컴퓨터 인터랙션)

  • 권기문;이정준;박강령;김재희
    • Proceedings of the IEEK Conference
    • /
    • 2003.11b
    • /
    • pp.83-86
    • /
    • 2003
  • This paper suggests user's interface with computer by means of detecting gaze under HMD, head mounted display, environment. System is derived as follows; firstly, calibrate a camera in HMD, which determines geometrical relationship between monitor and captured image. Second, detect the center of pupil using algorithm of the center of mass and represent a gazing position on the computer screen. If user blinks or stares at a certain position for a while, message is sent to computer. Experimental results show the center of mass is robust against glint effects, and detecting error was 7.1%. and 4.85% in vertical and horizontal direction, respectively. To adjust detailed movement of a mouse takes 0.8 sec more. The 98% of blinking is detected successfully and 94% of clicking detection is resulted.

  • PDF

Skin Color Based Facial Features Extraction

  • Alom, Md. Zahangir;Lee, Hyo Jong
    • Annual Conference of KIPS
    • /
    • 2011.11a
    • /
    • pp.351-354
    • /
    • 2011
  • This paper discusses on facial features extraction based on proposed skin color model. Different parts of face from input image are segmented based on skin color model. Moreover, this paper also discusses on concept to detect the eye and mouth position on face. A height and width ratio (${\delta}=1.1618$) based technique is also proposed to accurate detection of face region from the segmented image. Finally, we have cropped the desired part of the face. This exactly exacted face part is useful for face recognition and detection, facial feature analysis and expression analysis. Experimental results of propose method shows that the proposed method is robust and accurate.

Automatic Speechreading Feature Detection Using Color Information (색상 정보를 이용한 자동 독화 특징 추출)

  • Lee, Kyong-Ho;Yang, Ryong;Rhee, Sang-Burm
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.6
    • /
    • pp.107-115
    • /
    • 2008
  • Face feature detection plays an important role in application such as automatic speechreading, human computer interface, face recognition, and face image database management. We proposed a automatic speechreading feature detection algorithm for color image using color information. Face feature pixels is represented for various value because of the luminance and chrominance in various color space. Face features are detected by amplifying, reducing the value and make a comparison between the represented image. The eye and nose position, inner boundary of lips and the outer line of the tooth is detected and show very encouraging result.

  • PDF

Improvement of Face Components Detection using Neck Removal (목 부분의 제거를 통한 얼굴 검출 향상 기법)

  • Yoon, Ga-Rim;Yoon, Yo-Sup;Kim, Young-Bong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2004.11a
    • /
    • pp.321-326
    • /
    • 2004
  • Many researchers have been studied texturing the 3D face model with front and side pictures of ordinary person. It is very important to exactly detect the psition of eyes, nose, mouth of a human from the side pictures. Previous results first found the position of eye, nose, or mouth and then extract the other face components using their positional correlation. The detection results greatly depend on the correct extraction of the neck from the images. Therefore, we present a new algorithm that remove the neck completely and thus improve the detection rates of face components. To do this, we will use the RGB values and its differences.

  • PDF

Gaze Detection by Wearable Eye-Tracking and NIR LED-Based Head-Tracking Device Based on SVR

  • Cho, Chul Woo;Lee, Ji Woo;Shin, Kwang Yong;Lee, Eui Chul;Park, Kang Ryoung;Lee, Heekyung;Cha, Jihun
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.542-552
    • /
    • 2012
  • In this paper, a gaze estimation method is proposed for use with a large-sized display at a distance. Our research has the following four novelties: this is the first study on gaze-tracking for large-sized displays and large Z (viewing) distances; our gaze-tracking accuracy is not affected by head movements since the proposed method tracks the head by using a near infrared camera and an infrared light-emitting diode; the threshold for local binarization of the pupil area is adaptively determined by using a p-tile method based on circular edge detection irrespective of the eyelid or eyelash shadows; and accurate gaze position is calculated by using two support vector regressions without complicated calibrations for the camera, display, and user's eyes, in which the gaze positions and head movements are used as feature values. The root mean square error of gaze detection is calculated as $0.79^{\circ}$ for a 30-inch screen.

Head Mouse System Based on A Gyro and Opto Sensors (각속도 및 광센서를 이용한 헤드 마우스)

  • Park, Min-Je;Yoo, Jae-Ha;Kim, Soo-Chan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.4
    • /
    • pp.70-76
    • /
    • 2009
  • We proposed the device to control a computer mouse with only head movements and eye blinks so that disabilities by car or other accidents can use a computer. The mouse position were estimated from a gyro-sensor which can measure head movements, and the mouse events such as click/double click were from opto sensors which can detect the eyes flicker, respectively. The sensor was mounted on the goggle in order not to disturb the visual field. There was no difference in movement speed between ours and a general mouse, but it required 3$\sim$4 more times in the result of the experiment to evaluate spatial movements and events detection of the proposed mouse because of the low accuracy. We could eliminate cumbersome work to periodically remove the accumulated error and intuitively control the mouse using non-linear relative point method with dead zones. Optical sensors are used in the event detection circuitry designed to remove the influence of the ambient light changes, therefore it was not affected in the change of external light source.

A Study on the Facal motion and for Detection of area Using Kalman Fillter algorithm (Facal motion 예측 및 영역 검출을 위한 칼만 필터 알고리즘)

  • Seok, Gyeong-Hyu;Park, Bu-Yeon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.6
    • /
    • pp.973-980
    • /
    • 2011
  • In this paper, we gaze upon the movement faces the problem points are difficult to identify a user based on points and that corrective action is needed to solve the identification system is proposed a new eye. Kalman filter, the current head of the location information was used to estimate the future position in order to determine the authenticity of the face facial features and structural elements, the information and the processing time is relatively fast horizontal and vertical elements of the face using the histogram analysis to detect. And an infrared illuminator obtained by constructing a bright pupil effect in real-time detection of the pupil, the pupil was tracked - geulrinteu vectors are extracted.

Secure Internet of Things Based Human Detection in Computer Vision

  • Fatima Ashraf;Sheraz Arshad Malik;Muhammad Ayub Sabir
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.10
    • /
    • pp.154-158
    • /
    • 2024
  • Billions of the objects around us are transformed to the IoT device by connecting them with the internet and control in that way of collecting and sharing data. Privacy is required to keep the data save from the security attacks in internet of things. Computer vision is used for monitoring the people. Computer vision algorithms, application and tools are primarily used in IOT for human movement's analysis. Traditional system and algorithms are unable to detect the human in a perfect manner. Use of the thermal camera is degraded the movements of human detection. In this paper we propose a new IoT system that is combined with the latest feature of computer vision to detect the position using computer vision. It is a useful technology that helps to keep an eye on your house and office. It will alert you if anybody enters your home or office and do any harm at your place. For that purpose, the credit card size Raspberry PI card will be used. Histogram of oriented gradient (HOG) algorithm is used to detect the person in the image.