• Title/Summary/Keyword: extrusion processing

Search Result 334, Processing Time 0.024 seconds

Development of Porthole Extrusion Die for Improving Welding Pressure in Welding Chamber by Using Numerical Analysis (수치해석을 이용한 접합실 내 접합압력 향상을 위한 포트홀 압출금형 개발)

  • Lee, S.Y.;Lee, I.K.;Jeong, M.S.;Ko, D.C.;Kim, B.M.;Lee, S.K.
    • Transactions of Materials Processing
    • /
    • v.26 no.2
    • /
    • pp.115-120
    • /
    • 2017
  • Porthole extrusion process is a very effective metal forming process to produce aluminum profiles with hollow sections. The structure of porthole extrusion die is very complex. In this process, the billet is divided by porthole bridge, and then the divided billet is welded in the welding chamber. The welding pressure in the welding chamber is very important. The higher welding pressure improves the quality of the aluminum profiles. Therefore, the objective of this study is to develop a new porthole extrusion die for improving the welding pressure in the welding chamber by using numerical analysis. The effectiveness of the new porthole extrusion die was verified by using numerical analysis. Through numerical analysis, the welding pressures in the welding chamber between the new porthole die and the conventional porthole die were compared with each other.

Design of Porthole Extrusion Die for Improving the Welding Pressure in Welding Chamber by using the FE Analysis and Taguchi Method (유한요소해석 및 다구찌법을 이용한 접합실 내 접합압력 향상을 위한 포트홀 압출 금형 설계)

  • Lee, S.Y.;Lee, I.K.;Jeong, M.S.;Ko, D.C.;Lee, S.K.
    • Transactions of Materials Processing
    • /
    • v.28 no.6
    • /
    • pp.347-353
    • /
    • 2019
  • The porthole extrusion process is a classic metal forming process to produce complex cross-section shaped aluminum profile. It is very difficult to design porthole die and extrusion process because of the complex shape of extrusion die and internal metal flow. The main variables in this process are ram speed, initial billet and tool temperature, and die shape. In general, the metal flow of porthole extrusion process can be divided into two steps. During the first step, the billet is divided into several parts in the porthole die bridge. During the second step, the divided billets are welded in the welding chamber. In the welding chamber, the level of welding pressure is very important for the quality of the final product. The purpose of this study is to increase the welding pressure in the welding chamber by using a two stage welding chamber. The porthole extrusion die was designed by using the Taguchi method with orthogonal array. The effectiveness of the optimized porthole die was verified by using the finite element analysis.

A Bonding Surface Behavior of Bi-metal Bar through Hydrostatic Extrusion (이중복합봉 정수압 압출시 접합면 거동에 관한 연구)

  • Park, Hun-Jae;Na, Gyeong-Hwan;Jo, Nam-Seon;Lee, Yong-Sin
    • Transactions of Materials Processing
    • /
    • v.7 no.1
    • /
    • pp.66-71
    • /
    • 1998
  • The present study is concerned with the hydrostatic extrusion process of copper-clad aluminium bar to investigate the bonding conditions as well as the basic flow characteristics. Considering the bonding mechanism of bi-metal contact surface as cold pressure welding the normal pressure and the contact surface expansion are selected as process parameters governing the bonding conditions, in this study the critical normal pressure required for the local extrusion-the protrusion of virgin surfaces by the surface expansion at the interface-is obtained using a slip line method and is then used as a criteron for the bonding. A rigid plastic finite element method is used to analyze the steady state extrusion process. The interface profile of bi-metal rod is predicted by tracking the paths of two particles adja-process. The interface profile of bi-metal rod is predicted by tracking the paths of two particles adja-cent to interface surface. The contact surface area ration and the normal pressure along the interface are calculated and compared to the critical normal pressure to check bonding. It is found that the model predictions are generally in good agreement with the experimental observations. The compar-isons of the extrusion pressure and interface profile by the finite element with those by experi-ments are also given.

  • PDF

A Study on the Bending Process for the Curved Tube by Hot Metal Extrusion Machine with the Multiple Punches Moving in the Different Velocity (다지형 압출펀치의 상대이동 속도 차이에 의한 금속 곡관의 열간금속 압출굽힘가공에 관한 연구)

  • Park D. Y.;Jin I. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.102-105
    • /
    • 2001
  • The bending process for the curved tube can be developed by the hot metal extrusion machine with the multiple punches moving in the different velocity. The bending phenomenon has been studied to be occurred by the different of velocity at the die extrusion. The difference of velocity at the die exit section can be obtained by the different velocity of billets through the multi-hole container and by the welding of billets inside the porthole die chamber. The multiple billets are moving differently by the multiple extrusion punches controlled by PLC with the servo mechanism units. The results of the experiments show that the curved tube can be bended by the extrusion process and that the defects such as the distortion of section and the thickness change of thick tube, tile folding and wrinkling of thin tube can not be shown after the bending processing by the extrusion bending machine.

  • PDF

Forming Characteristics for the Bundle Extrusion of Cu-Ti Bimetal Wires (구리-타이타늄 복합선재의 번들압출 성형특성)

  • Lee, Y.S.;Kim, J.S.;Yoon, S.H.;Lee, H.Y.
    • Transactions of Materials Processing
    • /
    • v.18 no.4
    • /
    • pp.342-346
    • /
    • 2009
  • Forming characteristics for the bundle extrusion of Cu-Ti bimetal wires are investigated, which can identify the process conditions for weak mechanical bonding at the contact surface during the direct extrusion of a Cu-Ti bimetal wire bundle. Bonding mechanism between Cu and Ti is assumed as a cold pressure welding. Then, the plastic deformation at the contact zone causes mechanical bonding and a new bonding criterion for pressure welding is developed as a function of the principal stretch ratio and normal pressure at the contact surface by analyzing micro local extrusion at the contact zone. The averaged deformation behavior of Cu-Ti bimetal wire is adopted as a constitutive behavior at a material point in the finite element analysis of Cu-Ti wire bundle extrusion. Various process conditions for bundle extrusions are examined. The deformation histories at the three points, near the surface, in the middle and near the center, in the cross section of a bundle are traced and the proposed new bonding criterion is applied to predict whether the mechanical bonding at the Cu-Ti contact surface happens. Finally, a process map for the direct extrusion of Cu-Ti bimetal wire bundle is proposed.

Fabrication of a Micro Die by LIGA Process and Hybrid Powder Extrusion Process of Micro-spur Gear (LIGA 공정을 이용한 초소형 스퍼기어 금형 제작 및 하이브리드 분말 압출성형)

  • Lee, K.H.;Hwang, D.W.;Kim, J.H.;Jang, S.S.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.19 no.6
    • /
    • pp.352-356
    • /
    • 2010
  • This paper was designed to fabricate the micro-spur gear by the LIGA and hybrid powder extrusion process. It is important to manufacture a micro-die with a high aspect ratio and determine appropriate extrusion conditions for a microforming. Ni has been used to fabricate micro-dies. LIGA process was capable to produce micro-extrusion dies with close tolerance, longer bearing length and adequate surface quality. Superplastic Al-78Zn powders have the great advantage in achieving deformation under low stresses and exhibiting good micro-formability with average strain rate raging from $10^{-3}$ to $10^{-2} s^{-1}$ and constant temperature ranging from 503 to 563K. Al-78Zn powders were compacted into a cylindrical shape ($\Phi3\times$h10mm) under compressive force of 10kN and, subsequently, the compacted powders were extruded by the hybrid powder extrusion process controlling of the temperature holing time for a improvement on formability of Al-22Zn powder. Micro-extrusion has succeeded in forming micro-gear shafts.

A Study on Extru-Bending Process Extrusion Bending Machine (열간금속 압출굽힘기를 이용한 금속곡관의 압출굽힘가공에 관한 연구)

  • 박대윤;진인태
    • Transactions of Materials Processing
    • /
    • v.11 no.3
    • /
    • pp.262-268
    • /
    • 2002
  • The bending process for the rectangular and circular curled tube can be developed by the hot metal extrusion machine with the multiple punches moving in the different velocity. The bending phenomenon has been known to be occurred by the different of velocity at the die exit. The difference of velocity at the die exit section can be obtained by the different velocity of billets through the multi-hole container and by the cohesion of billet Inside the porthole die chamber. The bending phenomenon can be controlled by the two variables, the one of them is the difference of velocity at the die edit section by the different velocity of billets through the multi-hole container The other is the difference by the different hole diameter The results of the experiment show that the rectangular curved tube can be formed by the extrusion process, that the curvature of the curved product can be controlled by the velocity of punch and the diameter of container hole, that the defects such as the distortion of section and the thickness change of the wall of tube and the folding and wrinkling of thin tube did not happen after the extra-bending processing by the extrusion bending machine.

Overview of Wood Plastic Composites: Focusing on Use of Bio-based Plastics and Co-extrusion Technique

  • Kim, Birm-June
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.5
    • /
    • pp.499-509
    • /
    • 2014
  • Wood filler is a porous and anisotropic material having different size, shape, and aspect ratio. The use of wood fillers such as wood particle, wood flour, and wood pulp in wood plastic composites (WPCs) are growing rapidly because these wood fillers give improved strength and stiffness to WPCs. However, the wood fillers have originally poor compatibility with plastic matrix affecting the mechanical properties of WPCs. Therefore, to improve compatibility between wood and plastic, numbers of physical and chemical treatments were investigated. While the various treatments led to improved performances in WPC industries using petroleum-based plastics, full biodegradation is still issues due to increased environmental concerns. Hence, bio-based plastics such as polylactide and polyhydroxybutyrate having biodegradable characteristics are being applied to WPCs, but relatively expensive prices of existing bio-based plastics prevent further uses. As conventional processing methods, extrusion, injection, and compression moldings have been used in WPC industries, but to apply WPCs to engineered or structural places, new processing methods should be developed. As one system, co-extrusion technique was introduced to WPCs and the co-extruded WPCs having core-shell structures make the extended applications of WPCs possible.

Study on Accuracy of Product by Radial Deformation of Die in Backward Extrusion (후방압출 공정에서 금형의 반경반향 변형량을 통한 제품정밀도에 관한 연구)

  • 이강희;박태식;박용복
    • Transactions of Materials Processing
    • /
    • v.12 no.5
    • /
    • pp.498-503
    • /
    • 2003
  • The die for cold forging gets a very high axial load and radial pressure during processing and hence deforms considerably in the radial direction. This radial deformation of die becomes a important factor influencing the dimensional accuracy of a product. In order to obtain the product with highly accurate dimension, therefore, it is essential to acquire some information on elastic deformation of the die and the product. The study has been performed for the relation of the deformation between the die and the product in backward extrusion. The strain of the die has been given by the simple experiment using the strain gauges attached to the outer surface of the die. Also the history of the deformation of the die and the product has been given by the experiment and Lames' formula. The results has been compared with the previous another method. The study has given useful results for the deformation history of the die and the product through the experiment and Lame's formula in backward extrusion, which can be applied in the die design for the product with accurate dimension.