• Title/Summary/Keyword: extrusion force

Search Result 111, Processing Time 0.024 seconds

ROOT RESORPTION AND BONE RESORPTION BY JIGGLING FORCE IN CAT PREMOLARS (교대성 교정력이 고양이의 치근 흡수 및 치조골 흡수에 미치는 영향)

  • Kim, Young-Hoon;Son, Woo-Sung
    • The korean journal of orthodontics
    • /
    • v.24 no.3 s.46
    • /
    • pp.621-630
    • /
    • 1994
  • The purpose of this study was to evaluate root resorption and alveolar bone resorption pattern by jiggling movement. 16 adult cats were divided into 4 groups(6, 12, 18, 24 days). In test side, mesio-distal jiggling force was applied in right maxillary 1st premolar in 3 days cycle In control side, mesial force was applied in left maxillary 1st premolar. Radiographic and histologic observation were performed in 6, 12, 18, 24 days after force application. The results were as follow: 1. Alveolar bone resorption was more severe by jiggling force than by unidirectional force. 2. Root resorption pattern was not different between jiggling force and unidirectional force. 3. Combined pattern of bone resorption and new bone formation appeared in jiggling group. 4. New bone formation began to appear at periapical area of jiggling group after 24 days, because alveolar bone resorption was severe and extrusion resulted.

  • PDF

Finite Element Analysis of Extrusion Process in Semi-Solid State (반용융 재료의 압출공정에 관한 유한요소해석)

  • 황재호;고대철;민규식;김병민;최재찬
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.06a
    • /
    • pp.5-15
    • /
    • 1997
  • It is the objective of this study that by conducting the serni-solid extrusion using A12024, the effect of various process variables on the quality of extruded product and extrusion force is understood. The results of experiment are compared with those of finite element simulation in order to verify the effectiveness of the developed FE-simulation code. In order to simulate densification in the deformation of serni-solid material, the semi-solid material is assumed to be composed of solid region as porous skeleton following compressible visco-plastic model and liquid region following Darcy's equation for the liquid flow saturated in the interstitial space. Then the flow and deformation of the semi-solid alloy are analyzed by coupling the deformation of the porous skeleton and the flow of the eutectic liquid. It is assumed that initial solid fraction is homogeneous. Yield and plastic potential function presented by Kuhn and constitutive model developed by Gunasekera are used for solid skeleton.

  • PDF

Development of a Torsion Joint Yoke for Motor-Driven Power Steering System Using a Double-Action Extrusion Process (더블-액션 압출공정을 적용한 전동조향장치용 토션조인트 요크 개발)

  • Kim, H.M.;Kim, Y.K.;Park, Y.B.
    • Transactions of Materials Processing
    • /
    • v.21 no.8
    • /
    • pp.473-478
    • /
    • 2012
  • The yoke, a component of conventional motor-driven power steering system, often contains welding defects from its manufacturing process. To eliminate these defects, the precision cold forging process has been tried. In this study, the double-action complex forging has been used to manufacture a torsion joint yoke. The backward extrusion proved faster than the forward extrusion in forging of the product. The double-action complex forging process utilized an upper die composed of a punch, a punch guide, a disc spring and a coil spring. The forged material pushes up the punch guide, and then the disc spring and the coil spring balances the backward extrusion force. Consequently, the flow of material was essentially in the forward direction, resulting in a successful forging operation. The forging load of Al 6061-T6 was higher than that of the automotive structural hot rolled plate.

Analysis of Partial Least Square Regression on Textural Data from Back Extrusion Test for Commercial Instant Noodles (시중 즉석 조리 면의 Back Extrusion 텍스처 데이터에 대한 Partial Least Square Regression 분석)

  • Kim, Su kyoung;Lee, Seung Ju
    • Food Engineering Progress
    • /
    • v.14 no.1
    • /
    • pp.75-79
    • /
    • 2010
  • Partial least square regression (PLSR) was executed on curve data of force-deformation from back extrusion test and sensory data for commercial instant noodles. Sensory attributes considered were hardness (A), springiness (B), roughness (C), adhesiveness to teeth (D), and thickness (E). Eight and two kinds of fried and non-fried instant noodles respectively were used in the tests. Changes in weighted regression coefficients were characterized as three stages: compaction, yielding, and extrusion. Correlation coefficients appeared in the order of E>D>A>B>C, root mean square error of prediction D>C>E>B>A, and relative ability of prediction D>C>E>B>A. Overall, 'D' was the best in the correlation and prediction. 'A' with poor prediction ability but high correlation was considered good when determining the order of magnitude.

Effects of Secondary Forming Process on Mechanical Properties of $SiC_p$/Al Composites Fabricated by Squeeze Casting (용탕단조법에 의하여 제조한 $SiC_p$/Al 복합재료의 2차 성형공정이 기계적 성질에 미치는 영향)

  • Seo, Y.H;Kang, C.G
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3474-3490
    • /
    • 1996
  • A metal matrix composites(MMCs) for A16061 reinforced with silicon carbide particles is fabricated by melt-stirring method. The primary products of MMCs billets are prepared by volume fractions 5 vol% to 20 vol% and particle size $13\mu m$ to $22\mu m$.This paper will be made to examine the microstructure and mechanical properties of fabricated $SiC_p$/Al 6061 composite by melt-stirring and squeeze casting method. The MMC billets is extruded at $500^{\circ}C$ under the constant extrusion velocity $V_e$=2mm/min using curved shape die. Extrusion force, particle rearrangement, micro structure and mechanical properties of extruded composites will be investigated. The mechanical properties of primary billets manufactured by melt-stirring and squeeze casting method will be compared with extrusion specimen. The effect of volume fraction and size of the reinforcements will be studied. The increase in uniformity of particle dispersion is the major reason for an improvement in reliability due to hot extrusion with optimal shape die. Experimental Young's modulus and 0.2% offset yield strength for the extruded MMCs will be compared with theretical values calculated by the Eshelby method. A method will be proposed for the prediction of Young's modulus and yield strength in $SiC_p$ reinforced MMCs.

Effects of Ginseng on Textural and Sensory Properties of Long Life Noodles (인삼첨가 Long Life 면의 조직감과 관능적 특성)

  • 심창주
    • The Korean Journal of Food And Nutrition
    • /
    • v.12 no.5
    • /
    • pp.523-528
    • /
    • 1999
  • The influence of ginseng on the paste or gelatinization properties by amylograph and mixing properties by farinograph of wheat flour and on quality properties color cooking quality textural and sensory properties and reducing microbial population of LL(Long Life) noodles was studied. The contents of ginseng used were from 5% to 10% based on flour weight. The viscosity property of wheat flour with ginseng was increased the initial pasting temperature but the amylograph peak viscosity were decreased in vice versa. The farinograph absorption stability and breakdown were increased by ginseng. The whiteness of Ll nodles manufactured with ginseng was lower than that of control The shear extrusion force and hardness of LL noodles manufactured with ginseng were shown much higher value than those of control. At cooking quality examination of LL noodles manufactured with ginseng weight of cooked LL noodles was decreased but volum was appeared in ice versa,. Extraction amounts of LL noodles manufactured with ginseng during cooking were much smaller than those of control Total count of microorganism of Ll noodles manufactured with ginseng were decreased during storage at 3$0^{\circ}C$ Sensory properties of cooked LL noodles which was manufactured with ginseng showed quite acceptable. Based on the cooking and sensory evaluation test addition of 7.0% ginseng to wheat flour may be suitable for processing LL noodles.

  • PDF

Effects of Calcium on Textural and Sensory Properties of Ramyon (칼슘의 첨가에 따른 라면의 조직감과 관능적 특성)

  • 정재홍
    • The Korean Journal of Food And Nutrition
    • /
    • v.12 no.3
    • /
    • pp.252-257
    • /
    • 1999
  • In an attempt to evaluate the effects of calcium on paste or gelatinization properties by amylograph and mixing properties by farinograph of wheat flour and on viscosity property cooking quality textural and sensory properties of Ramyon were examined. The contents of calcium used were from 1.0% to 3.0% based on flour weight. The viscosity property of wheat flour with calcium was increased the initial past-ing temperature but the amylograph peak viscosity were decreased in vice versa. The farinograph absorp-tion stability and breakdown were increased by calcium. The shear extrusion force and hardness of Ram-yon manufactured with calcium were shown much higher value than those of control. At cooking quality examination of Ramyon manufactured with calcium weight of cooked Ramyon was increased by volume was decreased. Extraction amounts of Ramyon manufactured with calcium during cooking were much smaller than those of control. These changes will provided many advantages in the preparation of Ram-yon. The I2 reaction value of Ramyon manufactured with calcium and control were shown to almost same values. Sensory properties of cooked Ramyon which was manufactured with calcium showed quite acceptable. Based on the cooking and sensory evaluation test addition of 0.3% calcim to wheat flour may be suitable for processing Ramyon.

  • PDF

A Study on the Prediction of Fatigue Life in Dissimilar Materials Die Considering the Heat Shrink Fit (열박음을 고려한 이종재 금형의 피로수명 예측에 관한 연구)

  • 여은구;김엽래
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.93-98
    • /
    • 1999
  • Generally, the - life of die is limited by fatigue fracture or dimensional inaccuracy originated from wear. In this paper, to predict the fatigue life of the dissimilar materials die, the stress and stxain histories of die can be predicted by the analysis of elasto-plastic finite element neth hod and the elastic analysis of die during the process analysis of workpiece. Using heat shrink fit analysis, initial stress of the k r t die is computed. Also, the stress-life curve of die material can be obtained through experiment. With the above two facts, we propose the analysis method of predicting fatigue life in die. In the proposed model, tlz analysis of elastic-plastic finite element method for material is carried out by using ABAQUS. Surface force resulted from the contacting border of the die and workpiece is tmnsformed into the nodal force of die to implement elastic analysis. Besides, the proposed analysis model of die is applied to the one material and the dissimilar materials extrusion die.

  • PDF

Extrusion Process of Barley Flour for Snack Processing (스낵제조를 위한 보리의 압출성형공정)

  • Mok, Chul-Kyoon;Pyler, R.E.;Mcdonald, C.E.;Nam, Young-Jung;Min, Byong-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.429-436
    • /
    • 1984
  • To expand the utility of barley the experiments on the extrusion characteristics of barley flour for snack processing were carried out and the effects of the extrusion conditions on the quality of the extrudates were investigated. The optimum moisture content of barley flour for snack processing was 20%. The moisture content and the density of the extrudates decreased with increasing extrusion temperature and decreasing die size. The die swell ranged from 0.98 to 2.18 according to various extrusion conditions and decreased with increasing temperature above $150^{\circ}C$. The lightness, redness and yellowness increased at higher temperature. The water absorption index and the water solubility index showed their maximum values at $180^{\circ}C$.The gelatinization degree of the extrudates increased with increasing temperature. The fracture fore, Young's modulus and maximum fiber stress decreased, but the deformation to fracture increased, with increasing temperature and decreasing die size. The yield force in puncture test showed lower values at higher temperature. The size and the fraction of the air cells increased with increasing temperature and decreasing die size. The optimum extrusion conditions of barley for snack processing were at the temperature of $180^{\circ}C$, with the die size of 4.5mm when processed at 160 rpm.

  • PDF

Atraumatic Safe Extraction for Intentional Replantation (의도적 재식술을 위한 비외상성 안전 발치법)

  • Choi, Yong-Hoon;Bae, Ji-Hyun;Kim, Young-Kyun
    • The Journal of the Korean dental association
    • /
    • v.48 no.7
    • /
    • pp.531-537
    • /
    • 2010
  • Intentional replantation is useful for failed cases of conventional dental treatment - including root canal treatment - to restore the tooth in question. Based on a recent study, it is relatively very successful; prognosis is good for a long period. On the other hand, a tooth that becomes an indication of intentional replantation is often severely weakened throughout several treatments. Moreover, with multi-rooted teeth, extracting without root fracture is difficult. Safe extraction that is free of coronal or root fracture is important, but little information is known as to a concrete, safe way of extraction. There are a few considerations for safe extraction. First, a tooth with orthodontic extrusion force is easier for extraction due to its increased mobility; it increases the amount of the periodontal ligament, which is essential for re-attachment. As a safe way of extraction, the use of physics forceps has been introduced recently; it minimizes damage to the gingiva and alveolar hone. This paper reports the good result of using atraumatic safe extraction via both orthodontic extrusion and physics forceps$^{(R)}$.