• 제목/요약/키워드: extreme sea level

검색결과 65건 처리시간 0.024초

재해석자료를 이용한 한반도 해상의 기준풍속 추정 (Estimation of Reference Wind Speeds in Offshore of the Korean Peninsula Using Reanalysis Data Sets)

  • 김현구;김보영;강용혁;하영철
    • 신재생에너지
    • /
    • 제17권4호
    • /
    • pp.1-8
    • /
    • 2021
  • To determine the wind turbine class in the offshore of the Korean Peninsula, the reference wind speed for a 50-y return period at the hub height of a wind turbine was estimated using the reanalysis data sets. The most recent reanalysis data, ERA5, showed the highest correlation coefficient (R) of 0.82 with the wind speed measured by the Southwest offshore meteorological tower. However, most of the reanaysis data sets except CFSR underestimated the annual maximum wind speed. The gust factor of converting the 1 h-average into the 10 min-average wind speed was 1.03, which is the same as the WMO reference, using several meteorological towers and lidar measurements. Because the period, frequency, and path of typhoons invading the Korean Peninsula has been changing owing to the climate effect, significant differences occurred in the estimation of the extreme wind speed. Depending on the past data period and length, the extreme wind speed differed by more than 30% and the extreme wind speed decreased as the data period became longer. Finally, a reference wind speed map around the Korean Peninsula was drawn using the data of the last 10 years at the general hub-height of 100 m above the sea level.

Prediction of Climate Change Impacts on Streamflow of Daecheong Lake Area in South Korea

  • Kim, Yoonji;Yu, Jieun;Jeon, Seongwoo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.169-169
    • /
    • 2020
  • According to the IPCC analysis, severe climate changes are projected to occur in Korea as the temperature is expected to rise by 3.2 ℃, the precipitation by 15.6% and the sea level by 27cm by 2050. It is predicted that the occurrence of abnormal climate phenomena - especially those such as increase of concentrated precipitation and extreme heat in the summer season and severe drought in the winter season - that have happened in Korea in the past 30 years (1981-2010) will continuously be intensified and accelerated. As a result, the impact on and vulnerability of the water management sector is expected to be exacerbated. This research aims to predict the climate change impacts on streamflow of Daecheong Lake area of Geum River in South Korea during the summer and winter seasons, which show extreme meteorological events, and ultimately develop an integrated policy model in response. We projected and compared the streamflow changes of Daecheong Lake area of Geum River in South Korea in the near future period (2020-2040) and the far future period (2041-2060) with the reference period (1991-2010) using the HEC-HMS model. The data from a global climate model HadGEM2-AO, which is the fully-coupled atmosphere-ocean version of the Hadley Centre Global Environment Model 2, and RCP scenarios (RCP4.5 and RCP8.5) were used as inputs for the HEC-HMS model to identify the river basins where cases of extreme flooding or drought are likely to occur in the near and far future. The projections were made for the summer season (July-September) and the winter season(November-January) in order to reflect the summer monsoon and the dry winter. The results are anticipated to be used by policy makers for preparation of adaptation plans to secure water resources in the nation.

  • PDF

속초와 묵호항의 연간 최대해일고의 장기간 변동성에 대한 고찰 (A Study on the Long-Term Variations of Annual Maximum Surge Heights at Sokcho and Mukho Harbors)

  • 권석재;문일주;이은일
    • 한국해안·해양공학회논문집
    • /
    • 제20권6호
    • /
    • pp.564-574
    • /
    • 2008
  • 지구온난화로 야기되는 태풍강화 등의 기상변화로 인한 해일고의 장기간 변동성을 파악하기 위해 속초와 묵호 조위관측소의 34년간($1974{\sim}2007$) 해수면자료를 이용하여 연간 최대해일고의 변동경향 및 상위해일고의 기본특성을 고찰하였다. 선형회귀에 의한 연간 최대해일고의 증가율은 속초와 묵호에서 각각 약 8.3 cm/34yr와 8.7 cm/34yr로 95% 신뢰구간에서 해일고의 증가추세가 뚜렷이 나타났다. 두 지역에서 최대해일고는 53%가 태풍 시기에 관측되었으며, 해일고가 높을수록 태풍에 의한 영향이 컸던 것으로 나타났다. 속초와 묵호에서 최대해일고가 증가하는 이유는 열대해역의 수온증가와 이로 인한 전 지구적인 태풍과 한반도 영향 태풍의 활동 강화가 그 원인으로 분석된다. 따라서 강화된 태풍에 의한 해일의 피해를 줄이기 위해서는 기후변화에 따른 우리나라 연안의 해일고의 변동 특성에 대한 지속적인 분석이 필요할 것이다.

기후변화 영화를 활용한 융합교육 모형연구: 다큐멘터리 <불편한 진실>을 중심으로 (A Study on Interdisciplinary Education Model of Using Climate Change Film-Focusing on Documentary An Inconvenient Truth)

  • 황영미;오정진
    • 공학교육연구
    • /
    • 제19권5호
    • /
    • pp.57-64
    • /
    • 2016
  • This study is about interdisciplinary education model of using Davis Guggenheim's documentary film on global warming which is a big concern in climate change issues, An Inconvenient Truth. It based on Al Gore's slide speech. Through a course student analyzed the cause and phenomenon of global warming resulted from increase of $CO_2$ by using fossil fuel and its environmental science effects-heat wave, desertification, tornado, hurricane, sea level rise caused by melting glaciers, destroying ecosystem like habitat degradation of wild animals, for example polar bear, extreme cold wave caused by change of ocean currents- of global warming. After, student discussed of efforts to prevent global warming. This educational model is appropriate for lower grade student of environmental engineering and also available for converged majors or general education class.

Numerical Modeling of Circulation and Salinity Distribution in Seomjin River Estuary

  • Made Narayana Adibhusana;Yonguk Ryu;Taehwa Jung
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.526-526
    • /
    • 2023
  • Water circulation plays a crucial role in regulating the salinity of estuaries, which is essential for the survival of estuarine organisms. Changes in freshwater inflows or sea level can have significant impacts on the distribution and abundance of species within these ecosystems. To better understand these dynamics, this paper presents a study of water circulation and salinity distribution in Seomjin River estuary using the Finite Volume Coastal Ocean Model (FVCOM) numerical model. An extreme scenario was simulated to assess the potential impact of tidal currents and river flow discharge on circulation and salinity distribution. The results of this study have important implications for managing estuarine ecosystems and conserving their associated biodiversity.

  • PDF

2016년과 2018년 한반도 폭염의 특징 비교와 분석 (Characteristics and Comparison of 2016 and 2018 Heat Wave in Korea)

  • 이희동;민기홍;배정호;차동현
    • 대기
    • /
    • 제30권1호
    • /
    • pp.1-15
    • /
    • 2020
  • This study analyzed and compared development mechanisms leading to heat waves of 2016 and 2018 in Korea. The European Centre for Medium-Range Weather Forecasts Reanalysis Interim (ERA Interim) dataset and Automated Surface Observing System data are used for synoptic scale analysis. The synoptic conditions are investigated using geopotential height, temperature, equivalent potential temperature, thickness, potential vorticity, omega, outgoing longwave radiation, and blocking index, etc. Heat waves in South Korea occur in relation to Western North Pacific Subtropical High (WNPSH) pressure system which moves northwestward to East Asia during summer season. Especially in 2018, WNPSH intensified due to strong large-scale circulation associated with convective activities in the Philippine Sea, and moved farther north to Korea when compared to 2016. In addition, the Tibetan high near the tropopause settled over Northern China on top of WNPSH creating a very strong anticyclonic structure in the upper-level over the Korean Peninsula. Unlike 2018, WNPSH was weaker and centered over the East China Sea in 2016. Analysis of blocking indices show wide blocking phenomena over the North Pacific and the Eurasian continent during heat wave event in both years. The strong upper-level ridge which was positioned zonally near 60°N, made the WNPSH over the South Korea stagnant in both years. Analysis of heat wave intensity (HWI) and duration (HWD) show that HWI and HWD in 2018 was both strong leading to extreme high temperatures. In 2016 however, HWI was relatively weak compared to HWD. The longevity of HWD is attributed to atmosphere blocking in the surrounding Eurasian continent.

Host Vector Systems of Deep-sea Piezophilic Bacteria, and the Constructions of High Pressure Glow Cells

  • Sato, Takako;Kato, Chiaki
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2007년도 International Meeting of the Microbiological Society of Korea
    • /
    • pp.83-85
    • /
    • 2007
  • Deep-sea bacteria are adapted to extreme environments, such as high pressures and cold temperatures. We have isolated many piezophiles which grow well even under high pressures from deep-sea sediment. Shewanella violacea DSS12 and Moritella japonica DSK1 have the ability to grow at up to 70 MPa, and those bacteria have unique mechanisms of gene expression in response to high pressure conditions. The combination of gene expression systems in piezophiles, like the high pressure-dependent promoters and GFP reporter gene, may reveal highly fluorescent cells when exposed to high hydrostatic pressure conditions. It is predicted that a novel bio-sensing system can be made to probe high pressure environments using living bacteria. First, gene transformation into our piezophiles, strains DSS12 and DSK1, were examined. Eschericha coli S17-1 was used for bacterial conjugation with those piezophiles. As a result, the broad host range vector, pKT231, and the shuttle vector, pTH10, were successfully introduced to DSS12 and DSK1, respectively. Next, The pressure regulated promoters from DSS12 and DSK1 were cloned into proper vectors and combined with GFP as a reporter gene downstream of each promoter. The transformants of DSK1 and DSS12 with the recombinant pTH10 and pKT231 plasmid, which has cadA and glnA promoters (each of them is a pressure regulated promoter from DSK1 and DSS12, respectively) and GFP, were grown under high pressure and gene expression of GFP promoted by 50 MPa pressure was confirmed. This is a critical point to create a pressure-sensing bacteria, as the "High Pressure Glow Cells", which will indicate the level of environmental pressure using fluorescence of GFP as a reporter gene.

  • PDF

2020년 2월 8일 영동지역 강설 사례 시 관측과 수치모의 된 바람 분석 (An Analysis of Observed and Simulated Wind in the Snowfall Event in Yeongdong Region on 8 February 2020)

  • 김해민;남형구;김백조;지준범
    • 대기
    • /
    • 제31권4호
    • /
    • pp.433-443
    • /
    • 2021
  • The wind speed and wind direction in Yeongdong are one of the crucial meteorological factors for forecasting snowfall in this area. To improve the snowfall forecast in Yeongdong region, Yeongdong Extreme Snowfall-Windstorm Experiment, YES-WEX was designed. We examined the wind field variation simulated with Local Data Assimilation and Prediction System (LDAPS) using observed wind field during YES-WEX period. The simulated wind speed was overestimated over the East Sea and especially 2 to 4 times in the coastal line. The vertical wind in Yeongdong region, which is a crucial factor in the snowfall forecast, was not well simulated at the low level (850 hPa~1000 hPa) until 12 hours before the forecast. The snowfall distribution was also not accurately simulated. Three hours after the snowfall on the East Sea coast was observed, the snowfall was simulated. To improve the forecast accuracy of snowfall in Yeongdong region, it is important to understand the weather conditions using the observed and simulated data. In the future, data in the northern part of the East Sea and the mountain slope of Taebaek observed from the meteorological aircraft, ship, and drone would help in understanding the snowfall phenomenon and improving forecasts.

인공신경망 모형을 이용한 제주 지하수위의 장기예측 (Long-term Prediction of Groundwater Level in Jeju Island Using Artificial Neural Network Model)

  • 정일문;이정우;장선우
    • 대한토목학회논문집
    • /
    • 제37권6호
    • /
    • pp.981-987
    • /
    • 2017
  • 투수성이 큰 화산섬인 제주도에서는 땅속으로 함양된 지하수자원이 가장 중요한 수원이므로 지하수의 적정관리가 매우 중요하다. 특히 가뭄시 지하수의 이용은 염수침투를 유발할 수 있으므로 지하수위 강하에 따른 단계별 제한 조치가 마련되어 있다. 농업용 지하수위에 대한 적정 지하수 이용을 위해서는 보다 장기적인 예측을 통해 사전에 대비하는 것이 필요하다. 이에 본 연구에서는 인공신경망 모형을 이용한 지하수위의 월단위예측기법을 개발하였고, 대표적인 관측공에 대해 적용하였다. 월단위 지하수위를 예측한 결과 학습 및 검증기간 모두 예측 성능이 우수한 것으로 분석되었다. 또한 장기예측을 위해서 입력인자로 월단위 지하수위 예측치를 순차적으로 이용하는 연속지하수위예측 모형을 구축하고 수개월 동안 무강수의 극한조건에 대한 지하수위 저하 양상을 분석하였다.

K-평균 군집분석을 이용한 동아시아 지역 날씨유형 분류 (Classification of Weather Patterns in the East Asia Region using the K-means Clustering Analysis)

  • 조영준;이현철;임병환;김승범
    • 대기
    • /
    • 제29권4호
    • /
    • pp.451-461
    • /
    • 2019
  • Medium-range forecast is highly dependent on ensemble forecast data. However, operational weather forecasters have not enough time to digest all of detailed features revealed in ensemble forecast data. To utilize the ensemble data effectively in medium-range forecasting, representative weather patterns in East Asia in this study are defined. The k-means clustering analysis is applied for the objectivity of weather patterns. Input data used daily Mean Sea Level Pressure (MSLP) anomaly of the ECMWF ReAnalysis-Interim (ERA-Interim) during 1981~2010 (30 years) provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). Using the Explained Variance (EV), the optimal study area is defined by 20~60°N, 100~150°E. The number of clusters defined by Explained Cluster Variance (ECV) is thirty (k = 30). 30 representative weather patterns with their frequencies are summarized. Weather pattern #1 occurred all seasons, but it was about 56% in summer (June~September). The relatively rare occurrence of weather pattern (#30) occurred mainly in winter. Additionally, we investigate the relationship between weather patterns and extreme weather events such as heat wave, cold wave, and heavy rainfall as well as snowfall. The weather patterns associated with heavy rainfall exceeding 110 mm day-1 were #1, #4, and #9 with days (%) of more than 10%. Heavy snowfall events exceeding 24 cm day-1 mainly occurred in weather pattern #28 (4%) and #29 (6%). High and low temperature events (> 34℃ and < -14℃) were associated with weather pattern #1~4 (14~18%) and #28~29 (27~29%), respectively. These results suggest that the classification of various weather patterns will be used as a reference for grouping all ensemble forecast data, which will be useful for the scenario-based medium-range ensemble forecast in the future.