DOI QR코드

DOI QR Code

Characteristics and Comparison of 2016 and 2018 Heat Wave in Korea

2016년과 2018년 한반도 폭염의 특징 비교와 분석

  • Lee, Hee-Dong (Department of Astronomy and Atmospheric Sciences, Kyungpook National University) ;
  • Min, Ki-Hong (Department of Astronomy and Atmospheric Sciences, Kyungpook National University) ;
  • Bae, Jeong-Ho (Department of Astronomy and Atmospheric Sciences, Kyungpook National University) ;
  • Cha, Dong-Hyun (School of Urban and Environmental Engineering Ulsan National Institute of Science and Technology)
  • 이희동 (경북대학교 자연과학대학 천문대기과학과) ;
  • 민기홍 (경북대학교 자연과학대학 천문대기과학과) ;
  • 배정호 (경북대학교 자연과학대학 천문대기과학과) ;
  • 차동현 (울산과학기술원 도시환경공학부)
  • Received : 2019.09.05
  • Accepted : 2019.12.03
  • Published : 2020.03.31

Abstract

This study analyzed and compared development mechanisms leading to heat waves of 2016 and 2018 in Korea. The European Centre for Medium-Range Weather Forecasts Reanalysis Interim (ERA Interim) dataset and Automated Surface Observing System data are used for synoptic scale analysis. The synoptic conditions are investigated using geopotential height, temperature, equivalent potential temperature, thickness, potential vorticity, omega, outgoing longwave radiation, and blocking index, etc. Heat waves in South Korea occur in relation to Western North Pacific Subtropical High (WNPSH) pressure system which moves northwestward to East Asia during summer season. Especially in 2018, WNPSH intensified due to strong large-scale circulation associated with convective activities in the Philippine Sea, and moved farther north to Korea when compared to 2016. In addition, the Tibetan high near the tropopause settled over Northern China on top of WNPSH creating a very strong anticyclonic structure in the upper-level over the Korean Peninsula. Unlike 2018, WNPSH was weaker and centered over the East China Sea in 2016. Analysis of blocking indices show wide blocking phenomena over the North Pacific and the Eurasian continent during heat wave event in both years. The strong upper-level ridge which was positioned zonally near 60°N, made the WNPSH over the South Korea stagnant in both years. Analysis of heat wave intensity (HWI) and duration (HWD) show that HWI and HWD in 2018 was both strong leading to extreme high temperatures. In 2016 however, HWI was relatively weak compared to HWD. The longevity of HWD is attributed to atmosphere blocking in the surrounding Eurasian continent.

Keywords

References

  1. Bae, J.-H., and K.-H. Min, 2016: Analysis of the February 2014 East coast heavy snowfall case due to blocking. Atmosphere, 26, 227-241, doi:10.14191/Atmos.2016. 26.2.227 (in Korean with English abstract).
  2. Black, E., M. Blackburn, G. Harrison, B. Hoskins, and J. Methven, 2004: Factors contributing to the summer 2003 European heatwave. Weather, 59, 217-223. https://doi.org/10.1256/wea.74.04
  3. Cowan, T., A. Purich, S. Perkins, A. Pezza, G. Boschat, and K. Sadler, 2014: More frequent, longer, and hotter heat waves for Australia in the twenty-first century. J. Climate, 27, 5851-5871, doi:10.1175/JCLI-D-14-00092.1.
  4. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. Roy. Meteor. Soc., 137, 553-597, doi:10.1002/qj.828.
  5. Ding, T., W. Qian, and Z. Yan, 2010: Changes in hot days and heat waves in China during 1961-2007. Int. J. Climatol., 30, 1452-1462, doi:10.1002/joc.1989.
  6. Dole, R., M. Hoerling, J. Perlwitz, J. Eischeid, P. Pegion, T. Zhang, X.-W. Quan, T. Xu, and D. Murray, 2011: Was there a basis for anticipating the 2010 Russian heat wave? Geophys. Res. Lett., 38, L06702, doi:10.1029/2010GL046582.
  7. Gu, S., C. Huang, L. Bai, C. Chu, and Q. Liu, 2016: Heatrelated illness in China, summer of 2013. Int. J. Biometeorol., 60, 131-137, doi:10.1007/s00484-015-1011-0.
  8. Holton, J. R., and G. J. Hakim, 2012: An Introduction to Dynamic Meteorology. 5th Edition. Academic Press, 110-120.
  9. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T. F. Stocker et al. Eds., Cambridge University Press, 1535 pp.
  10. Kim, D.-W., J.-H. Chung, J.-S. Lee, and J.-S. Lee, 2014: Characteristics of heat wave mortality in Korea. Atmosphere, 24, 225-234, doi:10.14191/Atmos.2014.24.2.225 (in Korean with English abstract).
  11. KMA, 2018: 2018 Abnormal Climate Report, Korea Meteorological Administration, 48 pp (in Korean).
  12. KMA, 2019: KMA Yearbook 2018, Korea Meteorological Administration, 75 pp (in Korean).
  13. Kosatsky, T., 2005: The 2003 European heat waves. Eurosurveillance, 10, doi:10.2807/esm.10.07.00552-en.
  14. Lee, W.-S., and M.-I. Lee, 2016: Interannual variability of heat waves in South Korea and their connection with large-scale atmospheric circulation patterns. Int. J. Climatol., 36, 4815-4830, doi:10.1002/joc.4671.
  15. Lejanas, H., and H. Okland, 1983: Characteristics of northern hemisphere blocking as determined from a long time series of observational data. Tellus A, 35A, 350-362.
  16. Luo, M., and N.-C. Lau, 2017: Heat waves in Southern China: synoptic behavior, long-term change, and urbanization effects. J. Climate, 30, 703-720, doi:10.1175/JCLI-D-16-0269.1.
  17. Meehl, G. A., and C. Tebaldi, 2004: More intense, more frequent and longer lasting heat waves in the 21st century. Science, 305, 994-997. https://doi.org/10.1126/science.1098704
  18. Min, K.-H., C.-H. Chung, J.-H. Bae, and D.-H. Cha, 2019: Synoptic characteristics of extreme heatwaves over the Korean Peninsula based on ERA Interim reanalysis data. Int. J. Climatol., doi:10.1002/joc.6390.
  19. Nagano, Y., H. Kato, and S. Yamakawa, 2009: Recent cooling trend over northern Japan in August in relation to the weakening of the Tibetan high. J. Agric. Meteorol., 65, 129-139.
  20. Nakamura, H., and T. Fukamachi, 2004: Evolution and dynamics of summertime blocking over the Far East and the associated surface Okhotsk high. Q. J. R. Meteorol. Soc., 130, 1213-1233. https://doi.org/10.1256/qj.03.101
  21. Park, C.-K., and S. D. Schubert, 1997: On the nature of the 1994 East Asian summer drought. J. Climate, 10, 1056-1070. https://doi.org/10.1175/1520-0442(1997)010<1056:OTNOTE>2.0.CO;2
  22. Park, S.-W., H.-J. Jo, S. Beak, H. Yoo, and K. Woo, 2019: Analysis of heat-related illness surveillance in 2018. Public Health Weekly Report, 12, 630-638 (in Korean with English abstract).
  23. Pelly, J. L., and B. J. Hoskins, 2003: A new perspective on blocking. J. Atmos. Sci., 60, 743-755. https://doi.org/10.1175/1520-0469(2003)060<0743:ANPOB>2.0.CO;2
  24. Rohini, P., M. Rajeevan, and A. K. Srivastava, 2016: On the variability and increasing trends of heat waves over India. Sci. Rep., 6, 26153, doi:10.1038/srep26153.
  25. Scherrer, S. C., M. Croci-Maspoli, C. Schwierz, and C. Appenzeller, 2006: Two-dimensional indices of atmospheric blocking and their statistical relationship with winter climate patterns in the Euro-Atlantic region. Int. J. Climatol., 26, 233-249. https://doi.org/10.1002/joc.1250
  26. Schwierz, C., M. Croci-Maspoli, and H. C. Davies, 2004: Perspicacious indicators of atmospheric blocking. Geophys. Res. Lett., 31, L06125, doi:10.1029/2003GL019341.
  27. Shang, W., X. Ren, B. Huang, U. Cubasch, and X.-Q. Yang, 2019: Subseasonal intensity variation of the South Asian high in relationship to diabatic heating: observation and CMIP5 models. Climate. Dyn., 52, 2413-2430, doi:10.1007/s00382-018-4266-4.
  28. Smoyer, K. E., D. G. C. Rainham, and J. N. Hewko, 2000: Heat-stress-related mortality in five cities in Southern Ontario: 1980-1996. Int. J. Biometeorol., 44, 190-197. https://doi.org/10.1007/s004840000070
  29. Suh, M.-S., and Coauthors, 2016: Projections of high resolution climate changes for south Korea using multiple-regional climate models based on four RCP scenarios. part 1: Surface air temperature. Asia-Pac. J. Atmos. Sci., 52, 151-169, doi:10.1007/s13143-016-0017-9.
  30. Tibaldi, S., and F. Molteni, 1990: On the operational predictability of blocking. Tellus A, 42, 343-365. https://doi.org/10.1034/j.1600-0870.1990.t01-2-00003.x
  31. WMO, 1992: International Meteorological Vocabulary. Secretariat of the World Meteorological Organization, 784 pp.
  32. Yatagai, A., and T. Yasunari, 1995: Interannual variations of summer precipitation in the arid/semi-arid regions in China and Mongolia: Their regionality and relation to the Asian summer monsoon. J. Meteorol. Soc. Jpn., 73, 909-923.
  33. Yeo, S.-R., S.-W. Yeh, and W.-S. Lee, 2019: Two types of heat wave in Korea associated with atmospheric circulation pattern. J. Geophys. Res. Atmos., 124, 7498-7511, doi:10.1029/2018JD030170.
  34. Yeh, S.-W., Y.-J. Won, J.-S. Hong, K.-J. Lee, M. Kwon, K.-H. Seo, and Y.-G. Ham, 2018: The record-breaking heat wave in 2016 over South Korea and its physical mechanism. Mon. Wea. Rev., 146, 1463-1474, doi:10.1175/MWR-D-17-0205.1.
  35. Yoon, D., D.-H. Cha, G. Lee, C. Park, M.-I. Lee, and K.-H. Min, 2018: Impacts of synoptic and local factors on heat wave events over Southeastern region of Korea in 2015. J. Geophys. Res. Atmos., 123, 12081-12096, doi:10.1029/2018JD029247.