Journal of the Korean Society for information Management
/
v.40
no.2
/
pp.115-135
/
2023
The purpose of this study is to assess the effectiveness of using deep learning language models to extract references automatically and create a reference database for research reports in an efficient manner. Unlike academic journals, research reports present difficulties in automatically extracting references due to variations in formatting across institutions. In this study, we addressed this issue by introducing the task of separating references from non-reference phrases, in addition to the commonly used metadata extraction task for reference extraction. The study employed datasets that included various types of references, such as those from research reports of a particular institution, academic journals, and a combination of academic journal references and non-reference texts. Two deep learning language models, namely RoBERTa+CRF and ChatGPT, were compared to evaluate their performance in automatic extraction. They were used to extract metadata, categorize data types, and separate original text. The research findings showed that the deep learning language models were highly effective, achieving maximum F1-scores of 95.41% for metadata extraction and 98.91% for categorization of data types and separation of the original text. These results provide valuable insights into the use of deep learning language models and different types of datasets for constructing reference databases for research reports including both reference and non-reference texts.
Journal of Korean Society of Archives and Records Management
/
v.24
no.2
/
pp.89-112
/
2024
Metadata is a crucial component of record management, playing a vital role in properly managing and understanding the record. In cases where automatic metadata assignment is not feasible, manual input by records professionals becomes necessary. This study aims to alleviate the challenges associated with manual entry by proposing a method that harnesses ChatGPT technology for extracting records management metadata elements. To employ ChatGPT technology, a Python program utilizing the LangChain library was developed. This program was designed to analyze PDF documents and extract metadata from records through questions, both with a locally installed instance of ChatGPT and the ChatGPT online service. Multiple PDF documents were subjected to this process to test the effectiveness of metadata extraction. The results revealed that while using LangChain with ChatGPT-3.5 turbo provided a secure environment, it exhibited some limitations in accurately retrieving metadata elements. Conversely, the ChatGPT-4 online service yielded relatively accurate results despite being unable to handle sensitive documents for security reasons. This exploration underscores the potential of utilizing ChatGPT technology to extract metadata in records management. With advancements in ChatGPT-related technologies, safer and more accurate results are expected to be achieved. Leveraging these advantages can significantly enhance the efficiency and productivity of tasks associated with managing records and metadata in archives.
Journal of the Korean Society for information Management
/
v.40
no.2
/
pp.183-209
/
2023
The purpose of this study is to evaluate the Dublin Core metadata generated by ChatGPT using book covers, title pages, and colophons from a collection of books. To achieve this, we collected book covers, title pages, and colophons from 90 books and inputted them into ChatGPT to generate Dublin Core metadata. The performance was evaluated in terms of completeness and accuracy. The overall results showed a satisfactory level of completeness at 0.87 and accuracy at 0.71. Among the individual elements, Title, Creator, Publisher, Date, Identifier, Rights, and Language exhibited higher performance. Subject and Description elements showed relatively lower performance in terms of completeness and accuracy, but it confirmed the generation capability known as the inherent strength of ChatGPT. On the other hand, books in the sections of social sciences and technology of DDC showed slightly lower accuracy in the Contributor element. This was attributed to ChatGPT's attribution extraction errors, omissions in the original bibliographic description contents for metadata, and the language composition of the training data used by ChatGPT.
Journal of Korean Society of Archives and Records Management
/
v.18
no.1
/
pp.101-127
/
2018
The systematic management of research data is vital because it increases research data's value for research reproduction, verification, and reusability. Standard metadata will play a key role in research data registration, management, and data extraction. Research data has various structural relationships, such as research, research data, data sets, and files, and associated with entities such as citations and research results. The study proposes an ontology model for research data management. It also suggests the application of ontology to NTIS. Previous studies, metadata standard analyses, and research data repository case studies were conducted.
The Journal of the Korea institute of electronic communication sciences
/
v.17
no.5
/
pp.897-904
/
2022
Sports video is a very critical information resource. High-precision extraction of effective segments in sports video can better assist coaches in analyzing the player's actions in the video, and enable users to more intuitively appreciate the player's hitting action. Aiming at the shortcomings of the current sports video clip extraction results, such as strong subjectivity, large workload and low efficiency, a classification method of sports video clips based on MobileNetV3 is proposed to save user time. Experiments evaluate the effectiveness of effective segment extraction. Among the extracted segments, the effective proportion is 97.0%, indicating that the effective segment extraction results are good, and it can lay the foundation for the construction of the subsequent badminton action metadata video dataset.
Journal of the Korea Institute of Information and Communication Engineering
/
v.7
no.6
/
pp.1210-1216
/
2003
Traditional indexing mechanism are based on the song's metadata such as the title and the composer and so on. However, these system have a major limitation that users have to know the metadata of the songs they want to retrieve. In order to solve these limitation, we proposed a rhythm extraction system that allows users to retrieve music information efficiently from a large music database using the rhythm that is defined as the parts of the music.
Proceedings of the Korean Society of Computer Information Conference
/
2022.01a
/
pp.19-22
/
2022
서비스 관점에서 구축되는 추천 시스템의 성능은 얼마나 효율적인 추천 모델을 적용하여 심층적으로 설계되었는가에 좌우된다고도 볼 수 있다. 특히, 추천 시스템의 초개인화는 세계적인 추세로 1~2년 전부터 구글, 아마존, 알리바바 등의 데이터 플랫폼 강자들이 경쟁적으로 딥 러닝 기반의 알고리즘을 개발, 자신들의 추천 서비스에 적용하고 있다. 본 연구는 갈수록 고도화되는 추천 시스템으로 인해 발생하는 여러 문제들 중 사용자 또는 서비스 정보가 부족하여 계속적으로 발생하고 있는 Cold-start 문제와 추천할 서비스와 사용자는 지속적으로 늘어나지만 실제로 사용자가 소비하게 되는 서비스의 비율은 현저하게 감소하는 데이터 희소성 문제 (Sparsity Problem)에 대한 솔루션을 모색하는 알고리즘 관점에서 연구하고자 한다. 본 논문은 첫 단계로, 적용하는 메타데이터에 따라 추천 결과의 정확성이 얼마나 차이가 나는지를 보이고 딥러닝 비지도학습 방식을 메타데이터 선정 및 추출에 적용하여 실시간으로 변화하는 소비자의 실제 생활 패턴 및 니즈를 예측해야 하는 필요성에 대해서 기술하고자 한다.
The number of CCTV units is rapidly increasing annually, and the demand for intelligent video-analytics system is also increasing continuously for the effective monitoring of them. The existing analytics engines, however, require considerable computing resources and cannot provide a sufficient detection accuracy. For this paper, a light analytics engine was employed to analyze video and we collected metadata, such as an object's location and size, and the dwell time from the engine. A further data analysis was then performed to filter out the target of interest; as a result, it was possible to verify that a light engine and the heavy data analytics of the metadata from that engine can reject an enormous amount of environmental noise to extract the target of interest effectively. The result of this research is expected to contribute to the development of active intelligent-monitoring systems for the future.
Kim, Jae-Sung;Choi, Youngjin;Han, Myeong-Soo;Hwang, Jae-Dong;Cho, Wan-Sup
The Journal of Bigdata
/
v.4
no.2
/
pp.93-103
/
2019
In this paper, we introduce a big data platform and a metadata management technique for fishery science R & D information. The big data platform collects and integrates various types of fisheries science R & D information and suggests how to build it in the form of a data lake. In addition to existing data collected and accumulated in the field of fisheries science, we also propose to build a big data platform that supports diverse analysis by collecting unstructured big data such as satellite image data, research reports, and research data. Next, by collecting and managing metadata during data extraction, preprocessing and storage, systematic management of fisheries science big data is possible. By establishing metadata in a standard form along with the construction of a big data platform, it is meaningful to suggest a systematic and continuous big data management method throughout the data lifecycle such as data collection, storage, utilization and distribution.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.