• Title/Summary/Keyword: extracellular xylanase activity

Search Result 52, Processing Time 0.026 seconds

Characterization of a Thermophilic Lignocellulose-Degrading Microbial Consortium with High Extracellular Xylanase Activity

  • Zhang, Dongdong;Wang, Yi;Zhang, Chunfang;Zheng, Dan;Guo, Peng;Cui, Zongjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.2
    • /
    • pp.305-313
    • /
    • 2018
  • A microbial consortium, TMC7, was enriched for the degradation of natural lignocellulosic materials under high temperature. TMC7 degraded 79.7% of rice straw during 15 days of incubation at $65^{\circ}C$. Extracellular xylanase was effectively secreted and hemicellulose was mainly degraded in the early stage (first 3 days), whereas primary decomposition of cellulose was observed as of day 3. The optimal temperature and initial pH for extracellular xylanase activity and lignocellulose degradation were $65^{\circ}C$ and between 7.0 and 9.0, respectively. Extracellular xylanase activity was maintained above 80% and 85% over a wide range of temperature ($50-75^{\circ}C$) and pH values (6.0-11.0), respectively. Clostridium likely had the largest contribution to lignocellulose conversion in TMC7 initially, and Geobacillus, Aeribacillus, and Thermoanaerobacterium might have also been involved in the later phase. These results demonstrate the potential practical application of TMC7 for lignocellulosic biomass utilization in the biotechnological industry under hot and alkaline conditions.

Functional Characteristics and Diversity of a Novel Lignocelluloses Degrading Composite Microbial System with High Xylanase Activity

  • Guo, Peng;Zhu, Wanbin;Wang, Hui;Lu, Yucai;Wang, Xiaofen;Zheng, Dan;Cui, Zongjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.254-264
    • /
    • 2010
  • To obtain an efficient natural lignocellulolytic complex enzyme, we screened an efficient lignocellulose-degrading composite microbial system (XDC-2) from composted agricultural and animal wastes amended soil following a long-term directed acclimation. Not only could the XDC-2 degrade natural lignocelluloses, but it could also secrete extracellular xylanase efficiently in liquid culture under static conditions at room temperature. The XDC-2 degraded rice straw by 60.3% after fermentation for 15 days. Hemicelluloses were decomposed effectively, whereas the extracellular xylanase activity was dominant with an activity of 8.357 U/ml on day 6 of the fermentation period. The extracellular crude enzyme noticeably hydrolyzed natural lignocelluloses. The optimum temperature and pH for the xylanase activity were $40^{\circ}C$ and 6.0. However, the xylanase was activated in a wide pH range of 3.0-10.0, and retained more than 80% of its activity at $25-35^{\circ}C$ and pH 5.0-8.0 after three days of incubation in liquid culture under static conditions. PCR-DGGE analysis of successive subcultures indicated that the XDC-2 was structurally stable over long-term restricted and directed cultivation. Analysis of the 168 rRNA gene clone library showed that the XDC-2 was mainly composed of mesophilic bacteria related to the genera Clostridium, Bacteroides, Alcaligenes, Pseudomonas, etc. Our results offer a new approach to exploring efficient lignocellulolytic enzymes by constructing a high-performance composite microbial system with synergistic complex enzymes.

Purification and Characterization of an Extracellular Xylanase of Bacillus stearothermophilus (Bacillus stearothermophilus 가 생산하는 Xylanase의 정제 및 특성)

  • 배성호;최용진
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.6
    • /
    • pp.592-597
    • /
    • 1991
  • An extracellular xylanase of Bacillus stearothemophilus was purified to a single protein through a sequency of operations including ammonium sulfate fractionation, DEAE Sepharose CL-6B ion exchange chromatography, Sephadex G-100 gel filtration and heat treatment. The purified enzyme had a moleular weight of 170, 000. the pH and temperature optima for the enzyme activity were pH 9.0 and $55^{\circ}C$, respectively. The activity was enhanced by $co^{2+} \; and\; Mn^{2+}$, and inhibited by $Hg^{2+}$. Pattern of hydrolysis demonstrated that the xylanase was an endo-splitting enzyme able to break down larchwood xylan at random giving xylobiose and xylotriose as the main end products.

  • PDF

Isolation of a Thermophilic Bacillus sp. Producing the Thermostable Cellulase-free Xylanase,and Properties of the Enzyme (내열성 Cellulase-free Xylanase를 생산하는 고온성 Bacillus sp.의 분리 및 효소 특성)

  • Kim, Dae-Joon;Shin, Han-Jae;Min, Bon-Hong;Yoon, Ki-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.3
    • /
    • pp.304-310
    • /
    • 1995
  • A thermophilic bacterium producing the extracellular cellulase-free xylanase was isolated from soil and has been identified as Bacillus sp. The optimal growth temperature was 50$\circ$C and the optimal pH, 7.0. Under the optimal growth condition, maximal xylanase production was 2.2 units/ml in the flask culture. The enzyme production was induced by xylan and xylose, but was repressed by sucrose or trehalose. The partially purified xylanase was most active at 70$\circ$C. It was found that the enzyme was stable at 65$\circ$C for 10 hours with over 75% of the activity. The enzyme was most active at pH 7.0 and retained 90% of its maximum activity between pH 5.0 and pH 9.0 though Bacillus sp. was not grown on alkaline conditions (>pH 8.0). In addition, the activity of xylanase was over 60% at pH 10.0. At the ambient temperature, the enzyme was stable over a pH range of 5.0 to 9.0 for 10 h, indicating that the enzyme is thermostable and alkalotolerant. The activity of xylanase was completely inhibited by metal ions including Hg$^{2+}$ and Fe$^{2+}$, while EDTA, phenylmethylsulfonyl fluoride (PMSF), $\beta$-mercaptoethanol and SDS didn't affect its activity. The enzyme was also identified to exert no activity on carboxymethylcellulose, laminarin, galactomannan, and soluble starch.

  • PDF

Purification of an Xylanase from the Extracellular Xylanolytic Systems of Trichoderma viride and Hydrolysis of Xylan (Trichoderma viride 균체외 효소로 부터 Xylanase의 정제 및 Xylan의 분해)

  • Eom, Tae-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.22-29
    • /
    • 1991
  • The endo-1,4-${\beta}$-xylanase was extracted and purified from the extracellular xylanolytic systems of Trichoderma viride. The crude enzyme was chromatographed with ion-exchange reins of DEAE Sepharose CL-6B, Sepharose, S-Sepharose CL-6B and the resulting xylanase was turned out to be a single protein as 20KD hy SDS-polyacrylamide gel electrophoresis. The xylooligomers were obtained from xylan by incubation with the purified xylanase up to 50%. The ${\beta}$-xylosidase lost its activity completely by incubation of crude enzyme for 24hr with buffer solution of pH 2.8 at $27^{\circ}C$. And also, the xylooligomers were obtained from xylan as a main product by incubation with the crude enzyme treated with acidic buffer.

  • PDF

Detection of Extracellular Enzyme Activity in Penicillium using Chromogenic Media

  • Yoon, Ji-Hwan;Hong, Seung-Beom;Ko, Seung-Ju;Kim, Seong-Hwan
    • Mycobiology
    • /
    • v.35 no.3
    • /
    • pp.166-169
    • /
    • 2007
  • A total of 106 Penicillium species were tested to examine their ability of degrading cellobiose, pectin and xylan. The activity of ${\beta}$-glucosidase was generally strong in all the Penicillium species tested. P. citrinum, P. charlesii, P. manginii and P. aurantiacum showed the higher ability of producing ${\beta}$-glucosidase than other tested species. Pectinase activity was detected in 24 Penicillium species. P. paracanescens, P. sizovae, P. sartoryi, P. chrysogenum, and P. claviforme showed strong pectinase activity. In xylanase assay, 84 Penicillium species showed activity. Strong xylanase activity was detected from P. megasporum, P. sartoryi, P. chrysogenum, P. glandicola, P. discolor, and P. coprophilum. Overall, most of the Penicillium species tested showed strong ${\beta}$-glucosidase activity. The degree of pectinase and xylanase activity varied depending on Penicillium species.

The Extracellular Enzyme Activities in Culture Broth of Sparassis crispa. (꽃송이버섯(Sparassis crispa)의 세포외 효소활성)

  • Kim Ji-Young;Lim Chang-Soo;Kim Jae-Yong;Han Yeong-Hwan
    • Korean Journal of Microbiology
    • /
    • v.40 no.3
    • /
    • pp.230-231
    • /
    • 2004
  • The mycelia of Sparassis crispa DSMZ 5201 were cultivated at $24^{\circ}C$ for 15 days in yeast-malt extract-glucose broth (pH 4.0) and the filtrate was used as crude enzyme solution to determined the extracellular enzyme activity. The specific activity of $\alpha$-amylase was 44.27 unit/protein. The specific activities of protease, CMCase, $\beta$-glucosidase, chitinase, exo-$\beta$-l,4-glucanase were relatively high. However, a very little activity of xylanase was found.

Characterization of Extracellular Xylanase from Paenibacillus donghaensis JH8 (Paenibacillus donghaensis JH8에서 세포외 Xylanase의 특성)

  • Lim, Chae-Sung;Oh, Yong-Sik;Roh, Dong-Hyun
    • Korean Journal of Microbiology
    • /
    • v.47 no.1
    • /
    • pp.81-86
    • /
    • 2011
  • Xylanase is a class of enzymes that hydrolyze the linear polysaccharide ${\beta}$-1,4-xylan into xylose. This enzyme is applied in the process of paper making and may be used for the process of biofuel production in the future. The Paenibacillus donghaensis JH8, isolated from Donghae deepsea sediment and reported as a novel bacterium, was known to degrade xylan and its xylanase was characterized in this study. The enzyme was maximally induced in the presence of 0.1% xylan. The production of xylanase was started at early logarithmic phase and reached about 55 miliunit at stationary phase of growth. The optimal temperature and pH of extracellular xylanase were found to be $40^{\circ}C$ and pH 6.0, respectively. The activity of xylanase was inhibited by the presence of $Ca^{2+}$, $Mn^{2+}$, $Fe^{2+}$, $Cu^{2+}$, $Al^{3+}$ or EDTA, and activated by $K^+$, $Ag^+$ or DTT. This xylanase was stable at $40^{\circ}C$ for 120 min, but lost almost their activity in 30 min at $60^{\circ}C$. Zymography analysis of concentrated culture supernatant revealed one major band at 42 kDa and two faint bands at 68 and 120 kDa.

Characterization of Xylanase from Lentinus edodes M290 Cultured on Waste Mushroom Logs

  • Lee, Jae-Won;Gwak, Ki-Seob;Kim, Su-Il;Kim, Mi-Hyang;Choi, Don-Ha;Choi, In-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1811-1817
    • /
    • 2007
  • Extracellular enzymes from Lentinus edodes M290 on normal woods (Quercus mongolica) and waste logs from oak mushroom production were comparatively investigated. Endoglucanase, cellobiohydrolase, ${\beta}$-glucosidase, and xylanase activities were higher on waste mushroom logs than on normal woods after 1. edodes M290 inoculation. Xylanase activity was especially different, with a three times higher activity on waste mushroom logs. When the waste mushroom logs were used as a carbon source, a new 35 kDa protein appeared. After the purification, the optimal pH and temperature for xylanase activity were determined to be 4.0 and $50^{\circ}C$, respectively. More than 50% of the optimal xylanase activity was retained when the temperature was increased from 20 to $60^{\circ}C$, after a 240 min reaction. At $40^{\circ}C$, the xylanase maintained 93% of the optimal activity, after a 240 min reaction. The purified xylanase showed a very high homology to the xylanase family 10 from Aspergillus terreus by LC/MS-MS analysis. The highest Xcorr (1.737) was obtained from the peptide KWI SQGIPIDGIG SQTHLGSGGS WTVK originated from Aspergillus terreus, indicating that the 35 kDa protein was xylanase. This protein showed low homology to a previously reported L. edodes xylanase sequence.

Molecular Cloning and Expression of a Xylanase Gene from Alkalophilic Bacillus sp.

  • Yu, Ju-Hyun;Kang, Yun-Sook;Park, Young-Seo;Bai, Dong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.4
    • /
    • pp.251-255
    • /
    • 1991
  • A 16 kilobase (kb) HindIII fragment of alkalophilic Bacillus sp. YC-335 containing a gene for xylanase synthesis was inserted at the HindIII site of pBR322 and cloned in Escherichia coli HB101. After subcloning of recombinant plasmid pYS52, the 1.5 kb fragment was found to code for xylanase activity, and the hybrid plasmid was named pYS55. The DNA insert of the plasmid was subjected to restriction enzyme mapping, which showed that pYS55 had single site for PuvII and SstI in the 1.5 kb insert fragment. Southern hybridization analysis revealed that the cloned gene was hybridized with chromosomal DNA from alkalophilic Bacillus sp. YC-335. About 64% of the enzyme activity was observed in the extracellular and periplasmic space of E. coli HB10l carrying pYS55.

  • PDF