• Title/Summary/Keyword: extracellular regulated kinase

Search Result 527, Processing Time 0.024 seconds

Amphetamine-induced ERM Proteins Phosphorylation Is through $PKC{\beta}$ Activation in PC12 Cells

  • Jeong, Ha-Jin;Kim, Jeong-Hoon;Jeon, Song-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.4
    • /
    • pp.245-249
    • /
    • 2011
  • Amphetamine, a synthetic psychostimulant, is transported by the dopamine transporter (DAT) to the cytosol and increases the exchange of extracellular amphetamine by intracellular dopamine. Recently, we reported that the phosphorylation levels of ezrin-radixin-moesin (ERM) proteins are regulated by psychostimulant drugs in the nucleus accumbens, a brain area important for drug addiction. However, the significance of ERM proteins phosphorylation in response to drugs of abuse has not been fully investigated. In this study, using PC12 cells as an in vitro cell model, we showed that amphetamine increases ERM proteins phosphorylation and protein kinase C (PKC) ${\beta}$ inhibitor, but not extracellular signal-regulated kinase (ERK) or phosphatidylinositol 3-kinases (PI3K) inhibitors, abolished this effect. Further, we observed that DAT inhibitor suppressed amphetamine-induced ERM proteins phosphorylation in PC12 cells. These results suggest that $PKC{\beta}$-induced DAT regulation may be involved in amphetmaine-induced ERM proteins phosphorylation.

Scutellaria baicalensis Georgi(SBG) inhibits Melanin Synthesis in Mouse B16 Melanoma Cells (α-MSH 유도성 멜라닌 합성에 있어서 황금 추출물의 역할과 작용기전 연구)

  • Hong, Sung-Jin;Kim, Kyung-Jun
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.22 no.2
    • /
    • pp.104-117
    • /
    • 2009
  • Objective : Melanin is one of the most important facor in skin color. Melanin protects human skin from ultraviolet radiation otherwise it causes melanin pigmentation. So this experiment is carried out for test whether Scutellaria baicalensis Georgi(SBG) inhibits melanin synthesis and tyrosinase activity in mouse B16 melanoma cells. Method : The melanin synthesis inhibition effects of SBG were examined by in vitro melanin production assay. We assessed inhibitory effects of SBG on melanin contents from B16F1 melanoma cell, on tyrosinase activity(cell and cell free system), effect of SBG on the expression tyrosinase, Microphthalmia-associated Transcription Factor(MITF), Extracellular signal-regulated Kinase(ERK). Result : SBG inhibited melanin synthesis induced $\alpha$-MSH($\alpha$-Melanin Stimulating Hormone) in B16F1. SBG inhibited tyrosinase activity and expression. And SBG down-regulates MITF and stimulated ERK activation in B16F1. Conclusion : According to above results, SBG was improved its suppression effect to the inhibition of melanin synthesis, tyrosinase activation, and tyrosinase promotor activation. So SBG is considered to be used for an strong source of skin whitening effect.

  • PDF

The protective effect of anti-oxidant in cadmium-induced hair cell death

  • Kim, Su-Jin;Myung, No-Yil;Jeong, Hyun-Ja;Um, Jae-Young;Kim, Hyung-Min;Hong, Seung-Heon
    • Advances in Traditional Medicine
    • /
    • v.9 no.4
    • /
    • pp.285-291
    • /
    • 2009
  • Cadmium ($Cd^{2+}$) is a heavy metal and a potent carcinogen implicated in tumor development through occupational and environmental exposure. However, the auditory effect of $Cd^{2+}$ is not poorly understood. The purpose of the present study was to investigate whether prevent the ototoxic effects of $Cd^{2+}$ by antioxidnat in auditory cell line, HEI-OC1. Rosmarinic acid is a naturally occurring phenolic compound and also known to possess marked antioxidant properties. We showed that antioxidnat inhibited the the cytochrome c release induced by $Cd^{2+}$. In addition, we showed that the regulatory effect of antioxidnat on apoptosis is through the caspase-9 activation, and extracellular signal-regulated kinase activation in auditory cells. These results suggested antioxidnat its therapeutic usefulness, against $Cd^{2+}$ induced activation of caspase-9 and ERK.

Di(2-ethylhexyl) Phthalate Induces the Apoptotic Cell Death Mediated by Production of Reactive Oxygen Species in Human Keratinocyte (미세먼지의 di(2-ethylhexyl) phthalate가 유도한 피부상피세포 사멸 신호전달기전 연구)

  • Park, Jeong-Bae;Kim, Ji-Yun;Sung, Junghee;Kim, Yong-ung;Lee, Sei-Jung
    • Journal of Environmental Science International
    • /
    • v.29 no.3
    • /
    • pp.249-255
    • /
    • 2020
  • Particulate matter with an aerodynamic diameter of less than 2.5 μM (PM2.5) is one of the major environmental pollutants. Di(2-ethylhexyl) phthalate (DEHP), an endocrine disrupting chemical in PM2.5, has been utilized for the manufacturing of polyvinyl chloride to increase the flexibility of final products. In the present study, we investigated the ecotoxicological effect of DEHP on the viability of skin keratinocytes (HaCaT). DEHP induced apoptotic cell death mediated by phosphorylation of extracellular signal-regulated kinase through the production of intracellular Reactive Oxygen Species (ROS). Interestingly, we found that DEHP induces the phosphorylation of the nuclear factor-kappa B responsible for the expression of cleaved caspase-3 as an executional cell death protease in HaCaT cells. On the basis of these results, we suggest that DEHP in PM2.5 induces the apoptotic death of human keratinocytes via ROS-mediated signaling events.

Luteolin Inhibits Extracellular Signal-Regulated Kinase Pathway Through Protease-Activated Receptors (-2 and -4) and Their Agonist Activity

  • Lee, Sun-Hee;Sohn, Yong-Sun;Choi, Yeon-A;Lee, Ji-Eun;Kim, Dae-Ki;Lee, Young-Mi
    • Natural Product Sciences
    • /
    • v.13 no.2
    • /
    • pp.169-173
    • /
    • 2007
  • Luteolin is a major flavonoid of Lonicera japonica and has anti-inflammatory effect. The activation of proteinase-activated receptor (PAR)-2 and -4 by trypsin appears to play a role in inflammation, In the present study, we examined the inhibitory effects of luteolin on activation of trypsin-induced human leukemic mast cells (HMC-1). HMC-1 cells were stimulated with trypsin, PAR-2 and PAR-4 agonist, in the presence or absence of luteolin. The level of TNF-${\alpha}$ secretion was measured by enzyme-linked immunosorbent assay (ELISA). The expression of tryptase and phosphorylated-extracellular signal-regulated kinase (ERK) were assessed by Westem blot analysis. Moreover, trypsin activity was measured by the substrate Bz-DL-Arg-p-nitroanilide (BAPNA). TNF-${\alpha}$ secretion and Tryptase expression in trypsin-stimulated HMC-1 cells were markedly inhibited by pretreatment of luteolin. Furthermore, the pretreatment of luteolin resulted in the reduction of ERK phosphorylation and trypsin activity. These results suggest that luteolin might has the inhibitory effects on the PAR-2 and -4-dependent inflammation.

The inhibitory effect of egg white lysosome extract (LOE) on melanogenesis through ERK and MITF regulation

  • Park, Jung Eun;Hwang, Hyung Seo
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.2
    • /
    • pp.93-99
    • /
    • 2022
  • Lysosome organelle extract (LOE) was derived from egg whites. The lysosome is an intracellular organelle that contains several hydrolysis enzymes. Previous studies have reported that LOE performs important functions, such as melanin de-colorization and anti-melanin production in B16F10 melanoma cells. However, its principal molecular and cellular mechanisms have not been elucidated till date. In non-cytotoxic conditions, LOE significantly inhibited α-MSH induced melanin synthesis of murine B16F10 cells. The anti-melanogenic activity of LOE was mediated by suppressing the mRNA expression of tyrosinase enzyme, tyrosinase related protein-1/2 (TRP-1/2), and microphthalmia-associated transcription factor (MITF) genes. By performing western blot analysis, we found that LOE significantly attenuated melanogenesis. In this case, LOE helped in increasing extracellular receptor kinase (ERK) phosphorylation in α-MSH induced B16F10 cells. Furthermore, MITF is found to be a key regulatory transcription factor in melanin synthesis; it was down-regulated by LOE through ERK phosphorylation. In this experiment, PD98059 (MEK inhibitor) was used to check whether LOE directly regulated the activity of ERK. Although LOE exerted inhibitory effect on melanin synthesis, we could not observe this effect in PD98059-treated α-MSH induced B16F10. These results strongly indicate that LOE is related to ERK activation and MITF degradation in anti-skin pigmentation. Hence, LOE should be utilized as a whitening agent of skin in the near future.

Fibronectin-Dependent Cell Adhesion is Required for Shear-Dependent ERK Activation

  • Park, Heonyong;Shin, Jaeyoung;Lee, Jung Weon;Jo, Hanjoong
    • Animal cells and systems
    • /
    • v.8 no.1
    • /
    • pp.27-32
    • /
    • 2004
  • Endothellial cells are subjected to hemodynamic shear stress, the dragging force generated by blood flow. Shear stress regulates endothelial cell shape, structure, and function, including gene expression. Since endothelial cells must be anchored to their extracellular matrices(ECM) for their survival and growth, we hypothesized that ECMs are crucial for shear-dependent activation of extracellular signalactivated regulated kinase(ERK) that is important for cell proliferation. Shear stress-dependent activation of ERK was observed in cells plated on two different matrices, fibronectin and vitronectin(the two most physiologically relevant ECM in endothelial cells). We then treated bovine aortic endothelial cells(BAECs) with Arg-Gly-Asp(RGD) peptides that block the functional activation of integrin binding to fibronectin and vitronectin, and a nonfunctional peptide as a control. Treatment of cells with the RGD peptides, but not the control peptide, significantly inhibited ERK activity in a concentration-dependent manner. This supports the idea that integrin adhesion to the ligands, fibronectin and vitronectin, mediates shear stress-dependent activation of ERK. Subsequently, whereas antagonists of vitronectin(LM 609, an antibody for integrin ${\alpha}_{\gamma}$/${\beta}_3$ and XT 199, an antagonist specific for integrin ${\alpha}_{\gamma}$/${\beta}_3$) did not have any effect on shear-dependent activation of ERK, antagonists of fibronectin(a neutralizing antibody for integrin ${\alpha}_5$/${\beta}_1$or ${\alpha}_4$${\beta}_1$ and SM256) had an inhibitory effect. These results clearly demonstrate that mechanoactivation of ERK requires anchoring of endothelial cells to fibronectin through integrins.

Real-time FRET imaging of cytosolic FAK signal on microwavy patterned-extracellular matrix (ECM) (미세파상 패턴 ECM 에서 세포질 FAK 신호의 실시간 FRET 이미징)

  • Suh, Jung-Soo;Jang, Yoon-Kwan;Kim, Tae-Jin
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • Human mesenchymal stem cells (hMSC) are multipotent stromal cells that have great potential to differentiate into a variety of cell types such as osteocytes, chondrocytes, and myocytes. Although there have been many studies on their clinical availability, little is known about how intracellular signals can be modulated by topographic features of the extracellular matrix (ECM). In this study, we investigated whether and how microwavy-patterned extracellular matrix (ECM) could affect the signaling activity of focal adhesion kinase (FAK), a key cellular adhesion protein. The fluorescence resonance energy transfer (FRET)-based FAK biosensor-transfected cells are incubated on microwavy-patterned surfaces and then platelet derived growth factor (PDGF) are treated to trigger FAK signals, followed by monitoring through live-cell FRET imaging in real time. As a result, we report that PDGF-induced FAK was highly activated in cells cultured on microwavy-patterned surface with L or M type, while inhibited by H type-patterned surface. In further studies, PDGF-induced FAK signals are regulated by functional support of actin filaments, microtubules, myosin-related proteins, suggesting that PDGF-induced FAK signals in hMSC upon microwavy surfaces are dependent on cytoskeleton (CSK)-actomyosin networks. Thus, our findings not only provide new insight on molecular mechanisms on how FAK signals can be regulated by distinct topographical cues of the ECM, but also may offer advantages in potential applications for regenerative medicine and tissue engineering.

Inhibitory Activities of Red Ginseng Acidic Polysaccharide in Platelet Aggregation

  • Lee, Whi-Min;Kamruzzaman, S.M.;Song, Yong-Bum;Cho, Jae-Youl;Park, Hwa-Jin;Rhee, Man-Hee
    • Journal of Ginseng Research
    • /
    • v.32 no.1
    • /
    • pp.73-78
    • /
    • 2008
  • Red ginseng acidic polysaccharide (RGAP), isolated from Korean red ginseng (Panax ginseng C.A. Meyer), has been shown to have a variety of biological functions such as immunostimulating and anti-tumor activities. In the present study, we investigated whether RGAP inhibited ligand-induced platelet aggregation. The washed platelet-rich plasma was prepared from male SD rats with successive centrifugation. The platelets $(10^8/ml)$ were preincubated with 1 mM of $CaCl_2$ for 2 min either in the presence or in the absence of RGAP $(10{\sim}50\;{\mu}g/ml)$ and were stimulated with collagen (2.5 ${\mu}g/ml$) and thrombin (0.1 U/ml). RGAP dose-dependently inhibited thrombin-induced platelet aggregation with $IC_{50}$ value of $26.2{\pm}2.0$ ${\mu}g/ml$. In collagen-induced platelet aggregation, RGAP inhibited the reaction with an $IC_{50}$ value of $31.5{\pm}3.0\;{\mu}g/ml$. RGAP potently suppressed the intracellular calcium ion, which was stimulated by thrombin (0.1 U/ ml). Among mitogen-activated protein kinase (MAPK) subtypes, the extracellular signal-regulated kinase (ERK) 1/2 and p38 MAPK were analyzed in the present study. RGAP inhibited the phosphorylation of ERK2 and p38 MAPK, which was activated by collagen (2.5 ${\mu}g/ml$). Finally, these results suggested that besides saponin fraction, RGAP take an important role in the preventive effect of Korean red ginseng against cardiovascular disease such as thrombosis and atherosclerosis.

Cobalt Chloride-induced Apoptosis and Extracellular Signal-regulated Protein Kinase 1/2 Activation in Rat C6 Glioma Cells

  • Yang, Seung-Ju;Pyen, Jhin-Soo;Lee, In-Soo;Lee, Hye-Young;Kim, Young-Kwon;Kim, Tae-Ue
    • BMB Reports
    • /
    • v.37 no.4
    • /
    • pp.480-486
    • /
    • 2004
  • Brain ischemia brings about hypoxic insults. Hypoxia is one of the major pathological factors inducing neuronal injury and central nervous system infection. We studied the involvement of mitogen-activated protein (MAP) kinase in hypoxia-induced apoptosis using cobalt chloride in C6 glioma cells. In vitro cytotoxicity of cobalt chloride was tested by MTT assay. Its $IC_{50}$ value was $400\;{\mu}M$. The DNA fragment became evident after incubation of the cells with $300\;{\mu}M$ cobalt chloride for 24 h. We also evidenced nuclear cleavage with morphological changes of the cells undergoing apoptosis with electron microscopy. Next, we examined the signal pathway of cobalt chloride-induced apoptosis in C6 cells. The activation of extracellular signal-regulated protein kinase 1/2 (ERK 1/2) started to increase at 1 h and was activated further at 6 h after treatment of 400 M cobalt chloride. In addition, pretreatment of PD98059 inhibited cobalt chloride-induced apoptotic cell morphology in Electron Microscopy. These results suggest that cobalt chloride is able to induce the apoptotic activity in C6 glioma cells, and its apoptotic mechanism may be associated with signal transduction via MAP kinase (ERK 1/2).