References
- Allen, T. D. (1987) Ultrastructural aspects of cell death in Perspectives on mammalian cell death, Potten, C. S. (ed.), pp. 35-65, Oxford University Press, Oxford, UK.
- Arends, M. J. and Wyllie, A. H. (1991) Apoptosis: mechanisms and roles in pathology. Int. Rev. Exp. Pathol. 32, 223-254. https://doi.org/10.1016/B978-0-12-364932-4.50010-1
- Bae, S. K., Baek, J. H., Lee, Y. M., Lee, O. H. and Kim, K. W. (1998) Hypoxia-induced apoptosis in human hepatocellular carcinoma cells: a possible involvement of the 6-TG-sensitive protein kinase(s)-dependent signaling pathway. Cancer Lett. 126, 97-104. https://doi.org/10.1016/S0304-3835(97)00538-7
- Baek, J. H., Kang, C. M., Chung, H. Y., Park, M. H. and Kim, K. W. (1996) Increased expression of c-jun in the bile acidinduced apoptosis in mouse F9 teratocarcinoma stem cells. J. Biochem. Mol. Biol. 29, 68-72.
-
Barry, M. A. and Eastman, A. (1992) Endonuclease activation during apoptosis: the role of cytosolic
$Ca^{2+}$ and pH. Biochem, Biophys. Res. Commun. 186, 782-789. https://doi.org/10.1016/0006-291X(92)90814-2 - Cavigelli, M., Dolfi, F., Claret, F. X. and Karin, M. (1995) Induction of c-fos expression through JNK-mediated TCF/Elk-1 phosphorylation. EMBO J. 14, 5957-5964.
- Chandel, N. S., Maltepe, E., Goldwasser, E., Mathieu, C. E., Simon, M. C. and Schumacker, P. T. (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl. Acad. Sci. USA 95, 11715-11721. https://doi.org/10.1073/pnas.95.20.11715
- Chen, R. H., Sharnecki, C. and Blenis, J. (1992) Nuclear localization and regulation of erk- or rsk-encoded protein kinases. Mol. Cell. Biol. 12, 915-927.
- Conrad, P. W., Rust, R. T., Han, J., Millhorn, D. E. and Beitner- Johnson, D. (1999) Selective activation of p38 and p38 by hypoxia. J. Biol. Chem. 274, 23570-23576. https://doi.org/10.1074/jbc.274.33.23570
- Coso, O. A., Chiariello, M., Yu, J. C., Teramoto, H., Crespo, P., Xu, N., Miki, T. and Gutkind, S. (1995) The small GTPbinding proteins Rac 1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell 81, 1137-1146.
- Davis, R. J. (1993) The mitogen-activated protein kinase signal transduction pathway. J. Biol. Chem. 268, 14553-14556.
- Denisenko, M. F., Soldatenkov, V. A., Belovskaya, L. N. and Filippovich, I. V. (1989) Is the NAD-poly(ADP-ribose) polymerase system the trigger in radiation-induced death of mouse thymocytes? Int. J. Radiat. Biol. 56, 277-285. https://doi.org/10.1080/09553008914551441
- Forsythe, J. A., Jiang, B. H., Iyer, N. V., Agani, F., Leung, S. W., Koos, R. D. and Semenza, G. L. (1996) Activation of vascular endothelial growth factor gene transcription by hypoxiainducible factor 1. Mol. Cell. Biol. 16, 4604-4613.
- Goldberg, M. A., Dunning, S. P. and Burn, H. F. (1988) Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science 242, 1412-1415. https://doi.org/10.1126/science.2849206
- Guillemin, K. and Krasnow, M. A. (1997) The hypoxic response: huffing and hifing. Cell 89, 9-12. https://doi.org/10.1016/S0092-8674(00)80176-2
-
Jimenez, L. A., Zanella, C., Fung, H., Janssen, Y. M., Vacek, P., Charland, C., Goldberg, J. and Mossman, B. T. (1997) Role of extracellular signal-regulated protein kinase in apoptosis by asbestos and
$H_{2}O_{2}$ . Am. J. Physiol. 273, 1029. - Kerr J. F. R., Wyllie, A. H. and Currie, A. R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239-257. https://doi.org/10.1038/bjc.1972.33
- Kerr, J. F. R., Searle, J. and Harmon, B. V. (1987) Apoptosis in Perspectives on mammalian cell death, Potten, C. S. (ed.), p. 93, Oxford University Press, Oxford, UK.
- Kim, C. Y., Tsai, M. H., Osmanian, C., Greaber, T. G., Lee, J. E., Giffard, R. G., DiPaolo, J. A., Peehl, D. M. and Giaccia, A. J. (1997) Selection of human cervical epithelial cells that possess reduced apoptotic potential to low-oxygen conditions. Cancer Res. 57, 4200-4204.
- Kitazono, M., Takebayashi, Y., Ishitsuka, K., Takao, S., Tani, A., Furukawa, T., Miyadera, K., Yamada, Y., Aikou, T. and Akiyama, S. (1998) Prevention of hypoxia-induced apoptosis by the angiogenic factor thymidine phosphorylase. Biochem. Biophys. Res. Commun. 253, 797-803. https://doi.org/10.1006/bbrc.1998.9852
- Koong, A. C., Chen, E. Y., Kim, C. Y. and Giaccia, A. J. (1994) Activators of protein kinase C selectively mediate cellular cytotoxicity to hypoxia cells and not aerobic cells. Int. J. Radiat. Oncol. Biol. Phys. 29, 259-265. https://doi.org/10.1016/0360-3016(94)90272-0
- Kyriakis J. M., Banerjee, P., Nikolakaki, E., Dai, T., Rubie, E. A., Ahmad, M. F., Avruch, J. and Woodgett, J. R. (1994) The stress-activated protein kinase subfamily of c-Jun kinase. Nature 369, 156.
- Lockshin, R. A. and Zakeri, Z. F. (1990) Programmed cell death: new thoughts and relevance to aging. J. Gerontolt. 45, 135-140.
- Marshall, C. J. (1995) Specificity of receptor tyrosine-kinase signaling: transient versus sustained extracellular signalregulated kinase activation. Cell 80, 179-185. https://doi.org/10.1016/0092-8674(95)90401-8
- Martin, D. S. and Schwartz, G. K. (1997) Chemotherapeutically induced DNA damage, ATP depletion and the apoptotic biochemical cascade. Oncol. Res. 9, 1-5.
- Mazure, N. M., Chen, E. Y., Laderoute, K. R. and Giaccia, A. J. (1997) Induction of vascular endothelial growth factor by hypoxia is modulated by a phosphatidylinositol 3-kinase/Akt signaling pathway in Ha-ras-transformed cells through a hypoxia inducible factor-1 transcriptional element. Blood 90, 3322-3331.
- McConkey, D. J., Orrenius, S. and Jondal, M. (1996) Cellular signaling in programmed cell death (apoptosis). Immunol. Today 11, 120-121.
- Murray, B., Alessandrini, A., Cole, A. J., Yee, A. G. and Furshpan, E. J. (1998) Inhibition of the p44/42 MAP kinase pathway protects hippocampal neurons in a cell-culture model of seizure activity. Proc. Natl. Acad. Sci. USA 95, 11975-11980. https://doi.org/10.1073/pnas.95.20.11975
- Minet, E., Arnould, T., Michel, G., Roland, I., Mottet, D., Raes, M., Remacle, J. and Michiels, C. (2000) ERK activation upon hypoxia: involvement in HIF-1 activation. FEBS Lett. 468, 53-58. https://doi.org/10.1016/S0014-5793(00)01181-9
- Molnar, A., Theodoras, A. M., Zon, L. I. and Kyriakis, J. M. (1997) Cdc42Hs, but not Rac1, inhibits serum-stimulated cell cycle progression at G1-S through a mechanism requiring p38/RK. J. Biol. Chem.. 272, 13229-13235. https://doi.org/10.1074/jbc.272.20.13229
- Muller, J. M., Krauss, B., Kaltschmidt, C., Baeuerle, P. A. and Rupec, R. A. (1997) Hypoxia induces c-fos transcription via a mitogen-activated protein kinase-dependent pathway. J. Biol. Chem. 272, 23435-23439. https://doi.org/10.1074/jbc.272.37.23435
- Raingeaud, J., Gupta, S., Rogers, J. S., Dickens, M., Han, J., Ulevitch, R. J. and Davis, R. J. (1995) Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J. Biol. Chem. 270, 7420-7426. https://doi.org/10.1074/jbc.270.13.7420
- Richard, D. E., Berra, E., Gothie, E., Roux, D. and Pouyssegur, J. (1999) p42/p44 Mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1(HIF-1) and enhance the transcriptional activity of HIF-1. J. Biol. Chem. 274, 32631-32637. https://doi.org/10.1074/jbc.274.46.32631
- Rieder, C. L., Schultz, A., Cole, R. and Sluder, G. (1994) Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle. J. Cell. Biol. 127, 1301-1310. https://doi.org/10.1083/jcb.127.5.1301
- Risau, W. (1997) Mechanisms of angiogenesis. Nature 386, 671-674. https://doi.org/10.1038/386671a0
- Seimiya, H., Tanji, M., Oh-hara, T., Tomida, A., Naasani, I. and Tsuruo, T. (1999) Hypoxia up-regulates telomerase activity via mitogen-activated protein kinase signaling in human solid tumor cells. Biochem. Biophys. Res. Commun. 260, 365-370. https://doi.org/10.1006/bbrc.1999.0910
- Sen, S. and D'Incalci, M. (1992) Apoptosis. Biochemical events and relevance to cancer chemotherapy. FEBS Lett. 307, 122-127. https://doi.org/10.1016/0014-5793(92)80914-3
- Shtil, A. A., Mandlekar, S., Yu, R., Walter, R. J., Hagen, K., Tan, T. H., Roninson, I. B. and Kong, A. N. T. (1999) Differential regulation of mitogen-activated protein kinases by microtubulebinding agents in human breast cancer cells. Oncogene 18, 377-384. https://doi.org/10.1038/sj.onc.1202305
- Shweiki, D., Itin, A., Soffer, D. and Keshet, E. (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843-845. https://doi.org/10.1038/359843a0
- Shweiki, D., Itin, A., Soffer, D. and Keshet, E. (1997) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 240, 552-556.
- Stokoe, D., Macdonald, S., Cadwallader, K., Symons, M. and Hancock, J. (1994) Activation of Ras as a result of recruitment to the plasma membrane. Science 264, 1463-1467.
- van Dam, H., Wilhelm, D., Herr, I., Steffen, A., Herrlich, P. and Angel, P. (1995) ATF-2 is preferentially activated by stressactivated protein kinases to mediate c-jun induction in response to genotoxic agents. EMBO J. 14, 1798-1811.
-
Wang, G., Hazra, T. K., Mitra, S., Lee, H. M. and Englander, E. W. (2000) Mitochondrial DNA damage and hypoxic response are induced by
$COCl_{2}$ in rat neuronal PC12 cells. Nucleic Acids Res. 28, 2135-2140. https://doi.org/10.1093/nar/28.10.2135 - Wang, G. L. and Semenza, G. L. (1995) Purification and characterization of hypoxia-inducible factor-1. J. Biol. Chem. 270, 1230-1237. https://doi.org/10.1074/jbc.270.3.1230
- Wyllie, A. H., Kerr, J. F. R. and Currie, A. R. (1980) Cell death: the significance of apoptosis. Int. Rev. Cytol. 68, 251-306. https://doi.org/10.1016/S0074-7696(08)62312-8
- Yao, K. S., Clayton, M. and O'Dwyer, P. J. (1995) Apoptosis in human adenocarcinoma HT29 cells induced by exposure to hypoxia. J. Natl. Cancer. Inst. 87, 117-122. https://doi.org/10.1093/jnci/87.2.117
- Yao, K. S., Xanthoudakis, S. and Curran, T. (1994) Activation of AP-1 and of a nuclear redox factor, Ref-1, in the response of HT-29 colon cancer cells to hypoxia. Mol. Cell. Biol. 14, 5997-6003. https://doi.org/10.1128/MCB.14.9.5997
- Yoshioka, K., Clejan, S. and Fisher, J. W. (1998) Activation of protein kinase C in human hepatocellular carcinoma (HEP3B) cells increases erythropoietin production. Life Sci. 63, 523-535. https://doi.org/10.1016/S0024-3205(98)00303-8
- Yu, R., Shtil, A. A., Tan, T. H., Roninson, I. B. and Kong, A. N. (1996) Adriamycin activates c-jun N-terminal kinase in human leukemia cells: a relevance to apoptosis. Cancer Lett. 107, 73. https://doi.org/10.1016/0304-3835(96)04345-5
- Xia, Z., Dickens, M., Raingeaud, J., Davis, R. J. and Greenberg, M. E. (1995) Opposing effects of ERK and JNK-p38 MAP kinases on Apoptosis. Science 270, 1326-1331. https://doi.org/10.1126/science.270.5240.1326
Cited by
- Hypoxia-mimetic agents desferrioxamine and cobalt chloride induce leukemic cell apoptosis through different hypoxia-inducible factor-1α independent mechanisms vol.11, pp.1, 2006, https://doi.org/10.1007/s10495-005-3085-3
- Toxic effects of cobalt in primary cultures of mouse astrocytes vol.73, pp.5, 2007, https://doi.org/10.1016/j.bcp.2006.11.008
- Effects of CoCl2on multi-lineage differentiation of C3H/10T1/2 mesenchymal stem cells vol.20, pp.1, 2016, https://doi.org/10.4196/kjpp.2016.20.1.53
- Propolis attenuates cobalt induced-nephrotoxicity in adult rats and their progeny vol.64, pp.7-8, 2012, https://doi.org/10.1016/j.etp.2011.03.004
- Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones vol.24, pp.2, 2013, https://doi.org/10.1007/s10856-012-4793-1
- Cobalt-induced hormonal and intracellular alterations in rat ovarian fragmentsin vitro vol.49, pp.12, 2014, https://doi.org/10.1080/03601234.2014.951586
- Effects of PACAP and VIP on cyclic AMP formation in rat neuronal and astrocyte cultures under normoxic and hypoxic condition vol.28, pp.9, 2007, https://doi.org/10.1016/j.peptides.2007.04.007
- Cobalt and chromium ions reduce human osteoblast-like cell activity in vitro, reduce the OPG to RANKL ratio, and induce oxidative stress vol.30, pp.5, 2012, https://doi.org/10.1002/jor.21581
- A new model of retinal photoreceptor cell degeneration induced by a chemical hypoxia-mimicking agent, cobalt chloride vol.1109, pp.1, 2006, https://doi.org/10.1016/j.brainres.2006.06.037
- Systemic cobalt toxicity from total hip arthroplasties: review of a rare condition Part 1 - history, mechanism, measurements, and pathophysiology vol.98-B, pp.1, 2016, https://doi.org/10.1302/0301-620X.98B1.36374
- Stress-induced upregulation of VLDL receptor alters Wnt-signaling in neurons vol.340, pp.2, 2016, https://doi.org/10.1016/j.yexcr.2016.01.001
- Protective Effects of Salidroside on Endothelial Cell Apoptosis Induced by Cobalt Chloride vol.32, pp.8, 2009, https://doi.org/10.1248/bpb.32.1359
- Adenovirus-Mediated Transcriptional Targeting of Colorectal Cancer and Effects on Treatment-Resistant Hypoxic Cells vol.12, pp.3, 2013, https://doi.org/10.1016/j.clcc.2012.11.005
- Inhibition of proteasomal degradation of Mcl-1 by cobalt chloride suppresses cobalt chloride-induced apoptosis in HCT116 colorectal cancer cells vol.13, pp.8, 2008, https://doi.org/10.1007/s10495-008-0229-2
- The NADPH oxidase inhibitor DPI can abolish hypoxia-induced apoptosis of human kidney proximal tubular epithelial cells through Bcl2 up-regulation via ERK activation without ROS reduction vol.126, 2015, https://doi.org/10.1016/j.lfs.2015.02.004
- Cobalt-induced changes in the IGF-I and progesterone release, expression of proliferation- and apoptosis-related peptides in porcine ovarian granulosa cellsin vitro vol.45, pp.7, 2010, https://doi.org/10.1080/10934521003708968
- Brain Structure and Function in Patients after Metal-on-Metal Hip Resurfacing vol.35, pp.9, 2014, https://doi.org/10.3174/ajnr.A3922
- Neurotrophin-induced upregulation of p75NTR via a protein kinase C-delta-dependent mechanism vol.1217, 2008, https://doi.org/10.1016/j.brainres.2008.03.076
- Lutein Protects RGC-5 Cells Against Hypoxia and Oxidative Stress vol.11, pp.5, 2010, https://doi.org/10.3390/ijms11052109
- The neurotoxicity of iron, copper and cobalt in Parkinson’s disease through ROS-mediated mechanisms vol.29, pp.4, 2016, https://doi.org/10.1007/s10534-016-9942-4
- Cobalt induces oxidative stress in isolated liver mitochondria responsible for permeability transition and intrinsic apoptosis in hepatocyte primary cultures vol.41, pp.3, 2009, https://doi.org/10.1016/j.biocel.2008.07.012
- Induction of germline apoptosis by cobalt and relevant signal transduction pathways inCaenorhabditis elegans vol.19, pp.9, 2009, https://doi.org/10.3109/15376510903350363
- Cobalt chloride induces hepatotoxicity in adult rats and their suckling pups vol.63, pp.1-2, 2011, https://doi.org/10.1016/j.etp.2009.09.003
- Inhibition of ROS-activated ERK1/2 pathway contributes to the protection of H2S against chemical hypoxia-induced injury in H9c2 cells vol.362, pp.1-2, 2012, https://doi.org/10.1007/s11010-011-1137-2
- Environmental toxicity, oxidative stress and apoptosis: Ménage à Trois vol.674, pp.1-2, 2009, https://doi.org/10.1016/j.mrgentox.2008.11.012
- Alterations in blood pressure, antioxidant status and caspase 8 expression in cobalt chloride-induced cardio-renal dysfunction are reversed by Ocimum gratissimum and gallic acid in Wistar rats vol.36, 2016, https://doi.org/10.1016/j.jtemb.2016.03.015
- Effects of hypoxia on human cancer cell line chemosensitivity vol.13, pp.1, 2013, https://doi.org/10.1186/1471-2407-13-331
- Exacerbation of retinal degeneration in the absence of alpha crystallins in an in vivo model of chemically induced hypoxia vol.86, pp.2, 2008, https://doi.org/10.1016/j.exer.2007.11.007
- Oxidative stress-induced attenuation of thrombospondin-1 expression in primary rat astrocytes vol.112, pp.1, 2011, https://doi.org/10.1002/jcb.22732
- Microwave-Induced Chemotoxicity of Polydopamine-Coated Magnetic Nanocubes vol.16, pp.8, 2015, https://doi.org/10.3390/ijms160818283
- Neuronal mdr-1 gene expression after experimental focal hypoxia: A new obstacle for neuroprotection? vol.258, pp.1-2, 2007, https://doi.org/10.1016/j.jns.2007.03.004