• Title/Summary/Keyword: externally pressurized air bearing

Search Result 22, Processing Time 0.026 seconds

An Analysis of the Stability of Externally Pressurized Air-Lubricated Journal Bearings (외부가압 공기윤활 저어널베어링의 안정성에 관한 해석)

  • 임종락;김경웅;김금모
    • Tribology and Lubricants
    • /
    • v.6 no.1
    • /
    • pp.74-81
    • /
    • 1990
  • The threshold of instability for a rigid rotor supported in externally pressurized airlubricated circular or non-circular journal bearings of finite length is theoretically analyzed. The analysis is performed for a bearing having one feeding plane, no recess volume, which is assumed to be a line source, and is based on a first order perturbation of journal center motion about steady state position. And then linearized system dynamic analysis is carried out. Numerical results are given, showing the threshold of instability as a function of supply pressure ratio, feeding parameter and load. It is shown that the region that 2-lobe bearing is more stable than circular bearing exists and whirl ratio of 2-lobe bearing is less than that of the other types of bearing.

The development of the air-spindle for using to machining the die and mold (하이브리드 외부가압 공기베어링에서 노즐 위치에 따른 부하지지력 특성)

  • 이득우;이종렬;황성철;이준석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.466-470
    • /
    • 2000
  • Externally pressurized air journal bearing has been widely used in high-speed spindle system and precision machinery because of its characteristics such as substantially low frictional loss, low heat generation and averaging effect leading better running accuracy. But air journal bearing have a disadvantage of the low load capacity due to the low viscosity. In this paper, The air journal bearing design to overcome the defects of air bearing such as low stiffness and dimping coefficients was investigated theoretically.

  • PDF

Design of Air Turbine and Air Bearing for Dental Handpiece

  • Hwang, Pyung;Park, Sang-Shin;Sohn, Jeong-L.;Kwon, Seong-In;Kim, Do-Hyung;Kim, Woo-Seok
    • Tribology and Lubricants
    • /
    • v.23 no.5
    • /
    • pp.240-247
    • /
    • 2007
  • The design process of the dental handpiece is described. The parameters of the high speed air turbine are estimated. The effect of supply hole on the stiffuess and damping of the air bearing for handpiece is studied numerically. The Reynolds equation is solved by using the divergence formulation and the perturbation method. The test rig is built and the test procedure is developed for the turbine rotational speed measurement by using Fourier transform of noise generated by the turbine during steady operation.

A Study on the Loading Capacity According to the Source Positions in Externally Pressurized Air Journal Bearing with Two Row Sources (2열 외부가압 공기 저어널 베어링에서 급기구 위치에 따른 부하지지 특성에 관한 연구)

  • 이종열;성승학;이득우
    • Tribology and Lubricants
    • /
    • v.17 no.5
    • /
    • pp.365-372
    • /
    • 2001
  • This paper has been presented the hydrodynamic effect by the journal speed, eccentricity and source positions in order to overcome the defects of air bearing such as low stiffness and damping coefficient. Choosing the two row source position of air bearing is different from existed investigations in the side of pressure distribution of air film because of the high speed of journal and the wedge effects by the eccentricity. These optimal chooses of the two row source positions enable us to improve the performance of the film reaction force and loading force as making the high speed spindle. In this paper, The pressure behavior in theory of air film according to the eccentricity of journal and the source positions analyzed. The results of investigated characteristics may be applied to precision devices like ultra-precision grinding machine and ultra high speed milling.

An Experimental Study on the Dynamic Coefficient According to the Source Positions in Externally Pressurized Air-lubricated Journal Bearing with Two Row Sources (2열 외부가압 공기 저어널 베어링에서 급기구 위치에 따른 동적계수에 관한 실험적 연구)

  • 이종렬;이준석;성승학;이득우
    • Tribology and Lubricants
    • /
    • v.17 no.6
    • /
    • pp.476-481
    • /
    • 2001
  • This paper has been presented the hydrodynamic effect by the journal speed, eccentricity and source positions in order to overcome the defects of air bearing such as low stiffness and damping coefficient. Choosing the two row source position of air bearing is different from existed investigations in the side of pressure distribution of air film because of the high speed of journal and the wedge effects by the eccentricity. These optimal chooses of the two row source positions enable us to improve the performance of the film reaction force and loading force as making the high speed spindle. In this paper, The pressure behavior in theory of air film according to the eccentricity of journal and the source positions analyzed. The theoretical analysis have been identified by experiments. The results of investigated characteristics may be applied to precision devices like ultra-precision grinding machine and ultra high speed milling.

Effect of the Pocket Depth on the Hammering Behavior of an Air Bearing Stage (포켓의 깊이가 공기 베어링 스테이지의 햄머링 현상에 미치는 영향)

  • Lee, Chun Moo;Kim, Gyu Ha;Park, Sang Joon;Hwang, Gyu-Jin;Park, Sang-Shin
    • Tribology and Lubricants
    • /
    • v.37 no.4
    • /
    • pp.129-135
    • /
    • 2021
  • An air-bearing stage uses externally pressurized air as the lubricant between the stage and the rail. The supporting force generated by the supplied air makes the stage rise and move smoothly with extremely low friction. Mechanical contacts rarely happen, the bearing surfaces do not produce wear particles, and dust is not generated. It also has the advantage of having low energy loss and high precision. Because of its advantages, an air-bearing stage is used in several types of machines that require high precision. In this article, the effect of the pocket depth on the hammering phenomena of the air bearing is studied. An analysis program is developed to calculate the dynamic behavior of the stage by solving the Reynolds equation between the stage and the guideway and the equations of motion on the stage. The acceleration, constant movement, and deceleration are applied to the stage. The stage is modeled as a five-degree-of-freedom system. In the course of the dynamic behavior, the hammering phenomena occur under some special conditions. The deeper the pocket, the more unstable the behavior of the stage, and air hammering occurs when it exceeds a certain depth. In addition, the higher the supply pressure, the more unstable the behavior of the stage. However, hammering occurs even with a shallow pocket depth. Other conditions that affect the hammering phenomena are calculated and discussed.

Accurate Positioning with a Pneumatic Driving Apparatus (공기압 구동장치를 이용한 정밀위치제어)

  • Jang, Ji Seong
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.21-27
    • /
    • 2015
  • The accurate position control of pneumatic driving apparatus is considered in this paper. In pneumatically actuated positioning systems, accurate positioning as an electrical servo has been known to be difficult because of the friction force and compressibility of the air. For good control performance of the pneumatic system, an actuator mounted with externally pressurized air bearings is produced to compensate for friction force. For the controller design, the governing equation of the pneumatic driving apparatus is derived. In order to reduce the nonlinear characteristics of the control valve, linearized control input is derived from the relation between the effective area of the valve and the control input. The experimental results are presented to show the results of the improved position control of the pneumatic driving apparatus.

A Study on The Load Capacity of Doubly-Stepped Journal Bearing (공기윤활베어링의 부하용량 증대에 관한 연구)

  • ;;Kim, Hho Jung
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.3 no.1
    • /
    • pp.35-41
    • /
    • 1979
  • In order to improve the load capacity of externally pressurized air-lubeicatedjournal bearings, a new type(doubly-stepped type) bearing was revised and experimented. Through the results of experiment, the load capacity of doubly-stepped bearings was discussed and compared with equivalent conventional circular journal bearings. Results were obtained for speed up to 18000rpm and for supply pressure ratio(Ps/Pa) 4.8,6,7. Compared with equivalent conventional bearings, doubly-stepped bearings resultd a high gain in load capacity. It is also shown that the increasing rate of load capacith increases with decreasing the eccentricity ratio. Furthermore, the increasing rate is higher in the case of great clearanceratio than small dleatance ratio of doubly-stepped bearings. Such an increase in load capacity is confirmed by pressure distributions in the bearings.

Effect of the Acceleration and Deceleration on the Dynamic Characteristics of an Air Stage (에어 스테이지의 동적 특성에 미치는 가속도 및 감속도의 영향)

  • Park, Sang Joon;Lee, Jae Hyeok;Park, Sang-Shin;Kim, Gyu Ha
    • Tribology and Lubricants
    • /
    • v.36 no.1
    • /
    • pp.39-46
    • /
    • 2020
  • Air stages are usually applied to precision engineering in sectors such as the semiconductor industry owing to their excellent performance and extremely low friction. Since the productivity of a semiconductor depends on the acceleration and deceleration performance of the air stage, many attempts have been made to improve the speed of the stage. Even during sudden start or stop sequences, the stage should maintain an air film to avoid direct contact between pad and the rail. The purpose of this study is to quantitatively predict the dynamic behavior of the air stage when acceleration and deceleration occur. The air stage is composed of two parts; the stage and the guide-way. The stage transports objects to the guideway, which is supported by an externally pressurized gas bearing. In this study, we use COMSOL Multiphysics to calculate the pressure of the air film between the stage and the guide-way and solve the two-degree-of-freedom equations of motion of the stage. Based on the specified velocity conditions such as the acceleration time and the maximum velocity of stage, we calculate the eccentricity and tilting angle of the stage. The result shows that the stiffness and damping of the gas bearing have non-linear characteristics. Hence, we should consider the operating conditions in the design process of an air stage system because the dynamic behavior of the stage becomes unstable depending on the maximum velocity and the acceleration time.