• Title/Summary/Keyword: external tendons

Search Result 78, Processing Time 0.022 seconds

A Study on developement of improved Lifting Hole Anchorage System (개선된 인양홀 이용 정착장치의 개발에 관한 연구)

  • Lee, Nam-Ky;Kim, Hun-Jin;Chung, Yong-Jun;Lee, Jung-Soo;Lee, Jae-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.125-128
    • /
    • 2008
  • In the recent construction industry, external tendon method has been widely used for strengthening and repair of civil structures. This paper presents the strengthening effectiveness and application of the proposed external tendons using lifting hole anchorage system. Based on the experimental results of the previous external tendons using lifting hole anchorage systems, two types of modified systems were proposed. In order to verify the strengthening effectiveness of the two systems, six beams were built and a series of experiments was carried out. To compare and analyze the behaviors of the proposed systems, deflections and strains were measured. Additionally, yield load, ultimate load and failure modes were compared and analyzed.

  • PDF

Experimental study of moment redistribution and load carrying capacity of externally prestressed continuous composite beams

  • Chen, Shiming;Jia, Yuanlin;Wang, Xindi
    • Structural Engineering and Mechanics
    • /
    • v.31 no.5
    • /
    • pp.605-619
    • /
    • 2009
  • A comparative experimental study of prestressed continuous steel-concrete composite beams was carried out. Two continuous composite beams were tested, one of which was plain continuous steel-concrete composite beam, while the other was a composite beam prestressed with external tendons. Cracking behavior and the load carrying capacity of the beams were investigated experimentally. Full plasticity was developed in the mid-span section each beam, the maximum moments attained at the internal support sections however were governed by local buckling which was related to the slenderness of composite section. It was found that in hogging moment regions, the ultimate resistance of an externally prestressed composite beam would be governed by either distortional lateral buckling or local buckling, or interactive mode of these two buckling patterns. The results show that exerting prestressing on a continuous composite beam with external tendons will increase the extent of internal force and moment redistribution in the beam. The influences of local and distortional buckling on the behaviors of the composite continuous beams are discussed. The Moment redistribution and the load carrying capacity of the prestressed continuous composite beams are evaluated, and it is found that at the ultimate state, the moment redistribution in the prestrssed continuous composite beams is greater than that in non-prestressed composite beams.

Structural Behavior of Concrete Girder Continuous Bridges Strengthened with External Tendons Considering the Efficiency at Negative Moment Region (부모멘트부의 효율성을 고려한 외부강선으로 보강된 콘크리트 거더 연속교의 거동)

  • Han, Man-Yop;Cho, Byeong-Du;Jeon, Se-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.555-564
    • /
    • 2013
  • An effective method was proposed in this study which can improve the strengthening effect of continuous girder bridges by external tendons. The improvement of the proposed strengthening method in comparison with conventional methods was analyzed by applying equivalent load concept. In order to verify the strengthening effect, the enhancement of load-carrying capacity achieved by external prestressing was investigated through the test of continuous beams that were or were not strengthened by the external prestressing. The continuous beams were fabricated by making the deck slab continuous according to general construction practice of an actual concrete girder bridge. The test results showed that the deflections and strains of the strengthened beam were significantly reduced when comparing with those of the non-strengthened beam for the same level of external loads, and the stiffness of the member increased by strengthening. In particular, it was verified that the proposed method can effectively reduce the tensile stresses of the deck caused by negative moment at the intermediate supports of a continuous bridge.

Estimation of Internal Prestress Loss by External Prestressing Method on PSC Girder (외부긴장재 도입공법을 적용한 PSC거더의 내부프리스트레스 손실량 추정)

  • Yong, Hwan-Sun;Kim, Seok-Tae;Kim, Yoon-Hwan;Choe, Hyeon-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.1
    • /
    • pp.227-238
    • /
    • 2003
  • Due to deterioration of bridge, usually be using the external prestressing method among repair reinforcement method. But, there is much to be desired about a detailed account, almost it has analysed by cambers of girders, deflections of middle span and upper, bottom stresses of girders. Also, it is not examined closely that effect of internal prestress by external prestressing. The purpose of this study is confirmed the effect of internal tendons by external prestressing, estimation of additional external prestressing force and look for exact external prestressing force.

Dynamic Behavior of External Post-tensioned Non-ballast Steel Plate Girder Railway Bridge (외부 후 긴장된 무도상 철도 판형교 동적 거동)

  • Park, Yong Gul;Park, Young Hoon;Choi, Dong Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.315-322
    • /
    • 2008
  • The present study applied the external post tensioning reinforcement method for reinforcing a non-ballast steel plate girder railway bridge, and the effects of the strength of tendons and the level of post-tensioning force on the dynamic behavior are experimented and analyzed. According to the results of this study, the natural frequency was increased by the strength of tendons but it was decreased by the rise of post-tensioning force and as a consequence the introduction of post-tensioning force decreased natural frequency slightly. It was analyzed that further study is need to establish the exact relations between post-tensioning force and natural frequency. In addition, it was found that the dynamic displacement, dynamic bending stress and vertical acceleration were decreased by the external post-tensioning. On the other hand, external post-tensioning increased horizontal acceleration by up to 20%, which was around 70% of vertical acceleration. This needs further study.

Stress of External Steel Rod in Post-Tensioned Concrete Beam (포스트텐션 콘크리트 보에서 비부착 외부강봉의 응력)

  • Lee, Swoo-Heon;Kang, Thomas H.K.;Shin, Kyung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.1
    • /
    • pp.47-55
    • /
    • 2015
  • This paper shows the simplified equation to predict the ultimate moment capacity and corresponding rod stress in reinforced concrete beam with external post-tensioning rods. Because the stress of external post-tensioning rod depends on the beam deflection, the previous analytical model for post-tensioned beams requires a tedious iteration process. Also, the stress equations in ACI code or other researchers' models are suitable only for internal tendons in concrete beams. In this study, given the lack of analytical approaches to predict the nominal stress of the external unbonded rod, a simple and robust equation has been proposed for externally post-tensioned concrete beams. It is concluded that the proposed equation predicted the stress of external steel rods in post-tensioned concrete beams reasonably well.

Prestressed concrete bridges with corrugated steel webs: Nonlinear analysis and experimental investigation

  • Chen, Xia-chun;Bai, Zhi-zhou;Zeng, Yu;Jiang, Rui-juan;Au, Francis T.K.
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1045-1067
    • /
    • 2016
  • Concrete bridges with corrugated steel webs and prestressed by both internal and external tendons have emerged as one of the promising bridge forms. In view of the different behaviour of components and the large shear deformation of webs with negligible flexural stiffness, the assumption that plane sections remain plane may no longer be valid, and therefore the classical Euler-Bernoulli and Timoshenko beam models may not be applicable. In the design of this type of bridges, both the ultimate load and ductility should be examined, which requires the estimation of full-range behaviour. An analytical sandwich beam model and its corresponding beam finite element model for geometric and material nonlinear analysis are developed for this type of bridges considering the diaphragm effects. Different rotations are assigned to the flanges and corrugated steel webs to describe the displacements. The model accounts for the interaction between the axial and flexural deformations of the beam, and uses the actual stress-strain curves of materials considering their stress path-dependence. With a nonlinear kinematical theory, complete description of the nonlinear interaction between the external tendons and the beam is obtained. The numerical model proposed is verified by experiments.

Determination of the repair grout volume to fill voids in external post-tensioned tendons

  • Im, Seok Been;Hurlebaus, Stefan
    • Structural Engineering and Mechanics
    • /
    • v.42 no.1
    • /
    • pp.25-38
    • /
    • 2012
  • Recently, investigated failures of external post-tensioned (PT) tendons have called attention to the corrosion of strands in PT bridges, and the prevention of ongoing corrosion is required to secure their structural integrity. Since voids inside ducts can be a source for the ingress of water or deleterious chemicals, the vacuum grouting (VG) method and a volumeter for estimating amount of repair grouts were employed to fill voided ducts. However, the VG method is expensive and time-consuming for infield application because it requires an air-tight condition of entire ducts. Thus, latest research assessed three different repair grouting methods, and the pressure vacuum grouting (PVG) method was recommended in the field because it showed good filling capability in voided ducts and did not require an air-tight condition. Thus, a new method is required to estimate the volume of repair grouts because the PVG method is not applied in air-tight ducts. This research assesses the relationship between voided areas on ducts identified with soundings and required grout volume for repair using experimental results. The results show that the proposed equations and assumptions for estimating repair grout volume provide a sufficient amount of repair grouts for filling voided ducts.

Modeling fire performance of externally prestressed steel-concrete composite beams

  • Zhou, Huanting;Li, Shaoyuan;Zhang, Chao;Naser, M.Z.
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.625-636
    • /
    • 2021
  • This paper examines the fire performance of uninsulated and uncoated restrained steel-concrete composite beams supplemented with externally prestressed strands through advanced numerical simulation. In this work, a sequentially coupled thermo-mechanical analysis is carried out using ABAQUS. This analysis utilizes a highly nonlinear three-dimensional finite element (FE) model that is specifically developed and validated using full-sized specimens tested in a companion fire testing program. The developed FE model accounts for nonlinearities arising from geometric features and material properties, as well as complexities resulting from prestressing systems, fire conditions, and mechanical loadings. Four factors are of interest to this work including effect of restraints (axial vs. rotational), degree of stiffness of restraints, the configuration of external prestressed tendons, and magnitude of applied loading. The outcome of this analysis demonstrates how the prestressing force in the external tendons is primarily governed by the magnitude of applied loading and experienced temperature level. Interestingly, these results also show that the stiffness of axial restraints has a minor influence on the failure of restrained and prestressed steel-concrete composite beams. When the axial restraint ratio does not exceed 0.5, the critical deflection of the composite beam is lower than that of the composite beam with a restraint ratio of 1.0.

Analysis of Influence Factors for PSC Beams with Unbonded External Tendons (외부 비부착 강선에 의해 보강된 PSC보의 영향인자 분석)

  • Kwak, Hyo-Gyoung;Son, Je-Kuk;Kim, Sun-Yong;Park, Young-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.261-271
    • /
    • 2006
  • Many uncertainties affecting to the structural behavior of prestressed concrete (PSC) bridges reinforced with the un bonded external tendons are analyzed on the basis of the analytical method introduced in the companion paper. Many design parameters, which must be considered in design procedure, such as friction slip at the deviators, number of deviators, time-dependent deformations of concrete, relaxation of tendon and influence of loading history in PSC bridges are reviewed, and a lot of valuable results are obtained through this parametric study. In advance, the structural responses according to the external tendon profiles are analyzed to grasp if an optimum tendon profile depends on the applied loading type, and the obtained results show that the most stable structural response is revealed when the locations of deviators are coincident with the loading points.