• Title/Summary/Keyword: external forces

Search Result 739, Processing Time 0.022 seconds

A Study on the Control of the Slew Motion of a Single Point Moored Ship (일점계류된 선박의 불안정 거동 방지에 관한 연구)

  • Lee, Seung-Keon;Kang, Dong-Hoon
    • Journal of Navigation and Port Research
    • /
    • v.27 no.2
    • /
    • pp.193-198
    • /
    • 2003
  • The slew motion of a single point moored ship by the external forces is considered to control itself. The maneuvering equations of motion are derived to express the motion of a ship. The wind forces and the wave forces are considered as the external forces of the single point moored ship in the simulation. The wave forces in the time domain analysis are generated from the frequency transfer function calculated by 3-D source distribution method. The wind forces are used the results from OCIMF(1994). To control the slew motion, the bow thruster and the bridle anchoring with 2nd anchor are used in the numerical simulation.

Estimation of External Forces and Current Variables in Sea Trial by Using the Estimation-Before-Modeling Method (모델링 전 추정기법을 이용한 조종시운전시의 외력 및 조류 변수 추정)

  • H.K. Yoon;K.P. Rhee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.4
    • /
    • pp.30-38
    • /
    • 2001
  • The current is considered in the conventional manoeuvering equation. This equation is represented as the nonlinear state and measurement equations in which external forces and the direction and the velocity of current are augmented as that variables. The external forces are modeled as the third-order Gauss-Markov processes and the direction and the velocity of current are assumed to be constant. The augmented state variables are estimated with extended Kalman-Bucy filter and the fixed-interval smoother. While Hwang estimated motion state variables, hydrodynamic coefficients and the current variables simultaneously by using extended Kalman filter, external forces of surge, sway and yaw and the direction and the velocity of current are the only parameters to be estimated in the estimation-before-modeling method. The current variables are satisfactorily estimated in simulation process where the measurement noise is present.

  • PDF

Numerical Simulation of Particle Deposition Pattern on Cylindrical Fiber under External Electrical Field (외부 전기장내의 단일 섬유에 대한 먼지층 형사 수치 모사)

  • 박현설;정용원;박영옥;이규원
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.1
    • /
    • pp.41-51
    • /
    • 1999
  • In this study, the two dimensional morphology of particle accumulates on a cylindrical fiber was numerically simulated when a uniform external electric field was present across a cylindrical fiber. In order to investigate the mechanism of linear dendrite formation which is observed under the above electrostatic condition, the electrostatic forces between a newly introduced particle and each deposited particle were calculated and compared with those between the particle and fiber As a result of this study it was found that dielectrophoretic forces between the oncoming particle and fiber play principal roles in linear dendrite formation.

  • PDF

Assessment and Improvement of Ocean Physics for Coastal Erosion Projects (연안침식방지사업의 해양물리분야 평가실태 및 개선방안)

  • TAC, Daeho;OH, Hyuntaik
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.4
    • /
    • pp.947-956
    • /
    • 2016
  • This study analysed the documents of Sea Area Utilization Consultation of JongChun and ApHae located in West Coast of Korea and NaJeong located in East Coast of Korea in order to find out problems of site surveys and numerical simulations for coastal erosion projects of ocean physics, and suggested the improvement way to go. Current especially like wave-induced current is the one of the important external forces to handle coastal erosion but underestimated in the west coast. In case of east coast the various tests including wave-induced current were conducted but less efficient to find out the reasons of coastal erosion. The stiffness structure to protect coastal line like beach made the secondary erosion by using them without sufficient analysis for the erosion. In order to consult a Sea Area Utilization Consultation those are needed to review the scenarios for external forces such as wave and tidal currents, the site surveys for external forces, the net sediment analysis for years, the long periods of monitoring, and the guide line and revision of the rule for coastal erosion.

Nonlinear Motion Responses of a Moored Ship beside Quay (안벽에 계류된 선박의 비선형 운동응답)

  • 이호영;임춘규;유재문;전인식
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.8-15
    • /
    • 2003
  • When a typoon sets into harbour, a moored ship shows erratic motions and even mooring line failure may occur. such troubles may be caused by harbour resonance phenomena, resulting in large motion amplitudes at low frequency, which is close ti the natural frequency of th moored ship. The nonlinear motions of a ship moored to quay are simulated under external forces due to wave, current including mooring forces in time domain. The forces due to waves are obtained from source and dipole distribution method in the frequency domain. The current forces are calculated by using slow motion maneuvering equation in the horizontal plane. The wind forces are calculated from the empirical formula of ABS and the mooring forces of ropes and fenders are modeled as linear spring.

Nonlinear Motion Analysis of FPSO with Turret Mooring System (터렛계류된 FPSO의 비선형 운동 해석)

  • 임춘규;이호영
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.1
    • /
    • pp.20-27
    • /
    • 2003
  • The FPSO is moored by mooring lines to keep the position of it. The nonlinear motion analysis of the moored FPSO must be carried out in the initial design stage because sea environments affect motion of it. In this paper, the mathematical model is based on the slow motion maneuvering equations in the horizontal plane considering wave, current and wind forces. The direct integration method is employed to estimate wave loads. The current forces are calculated by using mathematical model of MMG. The turret mooring forces are quasi-statically evaluated by using the catenary equation. The coefficients of a model for wind forces are calculated from Isherwood's experimental data and the variation of wind speed is estimated by wind spectrum according to the guidelines of API-RP2A. The nonlinear motions of FPSO are simulated under external forces due to wave, current, wind including mooring forces in time domain.

Active Vibration Control of a Simply Supported Plate with Piezoelectric Sensors and Actuators - I. Theory (압전 센서와 액츄에이터를 이용한 단순지지 평판의 능동 진동제어 - I. 이론)

  • Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.11 no.3
    • /
    • pp.25-39
    • /
    • 1992
  • Undesired vibratory motion of a simply supported plate is controlled with piezoelectric sensors and actuators. Appropriate dynamic equations of the sensor and actuator are derived and coupled with the dynamic equation of the plate for the construction of an active feedback vibration control system. Analytic solutions are obtained for amplitude response of the plate, reflecting the combined effect of external driving forces and piezoelectric control moments. Numerical examples are presented to illustrate the effectiveness of this approach for two types of external forces, i.e. a concentrated point load and a piezoelectric plate driver. Calculation results show that the sensors and actuators can be efficient tools to mitigate the sensitivity of the structure to external sources of vibration. The method investigated in this work is applicable to arbitrary external loading conditions and control algorithms.

  • PDF

A Study on the Anchoring Safety Assessment of E-Group Anchorage in Ulsan Port (울산항 E 집단정박지 묘박안전성 평가에 관한 연구)

  • Lee, Yun-Sok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.2
    • /
    • pp.172-178
    • /
    • 2014
  • This study suggests the minimum critical external forces based on the assessment of anchoring safety to single anchor situation for representative 8 number of ships in E-group anchorage of Ulsan port. Assessment of anchoring safety is compared holding powers of anchor with external forces of wind, wave and current. Holding powers was reflected materials of seabed, equipment numbers regarding anchor and chain weight, also external forces acting on a hull was calculated considering projected wind area and wetted surface area to the full and ballast conditions respectively. The results of anchoring safety assessments to single anchor showed that the minimum criteria of dragging anchor is a little different from ship's type, size and loading conditions. Bulk carrier can be dragged over the 15m/s of winds and Tanker can be dragged over the 13m/s of winds in case of less than 2knots of currents speed.

Cumulative control output compensation technique for voice coil actuator used in small guided missiles (소형 유도무기용 보이스 코일 구동장치의 누적 제어 출력 보상 기법)

  • Wonsung Lee;Gwang Tae Kim;Choonghee Lee;Yongseon Lee;Seungho Jeong;Sungho Choi
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.4
    • /
    • pp.1-9
    • /
    • 2024
  • In this study, we researched control compensation techniques to enhance control robustness against external forces and responsiveness to output dead zones in direct-actuated voice coil actuators for small guided missiles. An aircraft's wings must optimally control the command angle while managing various nonlinear external forces such as drag, lift, and thrust during flight. The small direct -drive voice coil actuator, when applied, benefits from small current requirements in no-load situations but suffers from diminished control robustness due to rapid increases in control current during external force applications. To address this issue, we designed and implemented a system that compensates for errors by accumulating additional output, thus improving the actuator's responsiveness in control scenarios with external forces. This was verified through experimental results.

A study on an adaptive gait for a quadruped walking robot under external forces (외력 대처 기능을 갖는 사각 보행 로보트 적응 걸음새에 관한 연구)

  • ;;;;Zeungnam Bien
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.9
    • /
    • pp.1-12
    • /
    • 1996
  • In this paper, we propose an adaptive gait by which a quadruped walking robot can walk against external disturbances. This adaptive gait mechanism makes it possible for a quadruped walking robot to change its gait and accommodate external disturbances form various external environmental factors. Under the assumption that external disturbances can be converted to an external force acting on the body of a quadruped walking robot, we propose a new criterion for the stability margin of a waling robot by using an effective mass center based on the zero moment point under unknown external force. And for a solution of an adaptive gait against external disturbances, an method of altitude control and reflexive direction control is suggested. An algorithmic search method for an optimal stride of the quadruped mehtod, the gait stability margin of a quadruped walking robot is optimized in changing its direction at any instance for and after the reflexive direction control. To verify the efficiency of the proposed approach, some simulaton results are provided.

  • PDF