• Title/Summary/Keyword: external field

Search Result 1,749, Processing Time 0.039 seconds

Prediction of a Strong Effect of a Wek Magnetic Field on Diffusion Assisted Reactions in Non Equilibrium Conditions

  • Kipriyanov, Alexey A. Jr.;Purtov, Peter A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.1009-1014
    • /
    • 2012
  • The influence of magnetic fields on chemical processes has long been the subject of interest to researchers. For this time numerous investigations show that commonly the effect of a magnetic field on chemical reactions is insignificant with impact less than 10 percent. However, there are some papers that point to the observation of external magnetic field effect on chemical and biochemical systems actually having a significant impact on the reactions. Thus, of great interest is an active search for rather simple but realistic models, that are based on physically explicit assumptions and able to account for a strong effect of low magnetic fields. The present work theoretically deals with two models explaining how an applied weak magnetic field might influence the steady state of a non-equilibrium chemical system. It is assumed that external magnetic field can have effect on the rates of radical reactions occurring in a system. This, in turn, leads to bifurcation of the nonequilibrium stationary state and, thus, to a drastic change in the properties of chemical systems (temperature and reagent concentration).

Characteristics of Crossflow Electro-microfiltration Process for Treatment of Oily Waste Water (오일함유 폐수 처리를 위한 전기정밀여과 공정 특성)

  • 최왕규;이재원;이근우
    • Membrane Journal
    • /
    • v.12 no.4
    • /
    • pp.216-225
    • /
    • 2002
  • Experimental study on the crossflow electro-microfi1tation of simulated oil emulsion waste water was carried out with polypropylene microfiltration membrane to evaluate the applicability of electrofiltration process in the treatment of oily waste water generated from many industries including nuclear field. The effects of electric field strength transmembrane pressure, crossflow velocity, and oil emulsion concentration on the permeate flux were investigated. In electro-microfiltration process using the external electric field, significant enhancement of permeate flux was achieved by diminishing membrane fouling and it was shown that considerable permeate flux can be maintained for long-term operation compared with conventional membrane filtration process without an electric field.

The Electrical Characterization of Magnetic Tunneling Junction Cells Using Conductive Atomic Force Microscopy with an External Magnetic Field Generator

  • Heo, Jin-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.6
    • /
    • pp.271-274
    • /
    • 2010
  • We examined the tunneling current behaviors of magnetic tunneling junction (MTJ) cells utilizing conductive atomic force microscopy (AFM) interfaced with an external magnetic field generator. By introducing current through coils, a magnetic field was generated and then controlled by a current feedback circuit. This enabled the characterization of the tunneling current under various magnetic fields. The current-voltage (I-V) property was measured using a contact mode AFM with a metal coated conducting cantilever at a specific magnetic field intensity. The obtained magnetoresistance (MR) ratios of the MTJ cells were about 21% with no variation seen from the different sized MTJ cells; the value of resistance $\times$ area (RA) were 8.5 K-12.5 K $({\Omega}{\mu}m^2)$. Since scanning probe microscopy (SPM) performs an I-V behavior analysis of ultra small size without an extra electrode, we believe that this novel characterization method utilizing an SPM will give a great benefit in characterizing MTJ cells. This novel method gives us the possibility to measure the electrical properties of ultra small MTJ cells, namely below $0.1\;{\mu}m\;{\times}\;0.1\;{\mu}m$.

Surface hydrophilicity modification of PVDF membranes with an external electric field in the phase inversion process

  • Shi, Bao-Li;Su, Xing;He, Jing;Wang, Li-Li
    • Membrane and Water Treatment
    • /
    • v.6 no.5
    • /
    • pp.351-363
    • /
    • 2015
  • To increase the surface hydrophilicity of PVDF membranes, in this paper, an electric enhancing method was adopted to treat PVDF nascent membranes during the phase inversion process. It was found that when PEG 600 was taken as the additive, the surface water contact angle of the PVDF membrane treated under 2 kV electric field was decreased from $84.0^{\circ}$ to $65.7^{\circ}$. The reason for the surface elements change of the PVDF membranes prepared under the electric field was analyzed in detail with the dielectric parameters of the polymer dope solutions. Results from BSA adsorption experiment showed that the antifouling ability of the external electric field-treated membranes was distinctly enhanced when compared with that of the untreated membranes. The amount of BSA adsorbed by the treated membranes was lower by 38-43%. Compared with the common chemical reaction methods to synthesize hydrophilic additives or membrane materials, the electric field-assisted processing method did not involve any additional chemical synthesis process and it was capable of realizing better hydrophilicity.

Remote Field Energy Flow Path at Nonmagnetic Coaxial Tubes (비자성체 이중관의 원격장 에너지 전달 경로)

  • Yi, Jae-Kyung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.5
    • /
    • pp.526-531
    • /
    • 2001
  • The flow of remote field eddy current energy is studied at nonmagnetic coaxial tubes by using both experiments and finite element calculations based on commercial software package. The results showed that remote field eddy current energy at coaxial tubes flow along over the outer surface of external tube, not through the gap between internal and external tubes. This means that the through wall transmission characteristic of remote field eddy current testing (RFECT) is still valid at tube in tube configurations and the RFECT could be potential nondestructive technique for crack detection, spacer location and gap sizing at the coaxial CANDU fuel channel tubes.

  • PDF

Development of Dark-striped Field Mice, Apodemus agrarius, as a Biological Dosimeter in a Radio-ecological Monitoring System 3. Radio-sensitivity between A. agrarius and ICR Mice

  • Kim Hee-sun;Nishimura Y.;Jin Young-Woo;Kim Chong-Soon
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.513-517
    • /
    • 2005
  • This study examined the possibility of using striped field mice as a biological dosimeter or indicator for the environmental radio-surveillance. For this study, the external morphological characteristics and isoenzymic types of dark-striped field mice were studied after they were captured. Among the morphological external characteristics, the dark-brown coat, dark back stripe, head-to-tail length, tail length, and ear length matched the taxonomical characteristics of dark-striped field mice. The analyses on L-lactate dehydrogenase, aspartate aminotransferase, and malate dehydrogenese revealed that one species of dark-striped field mice, called Apodemus agrarius, was inhabitated throughout a wide range of Korea. On the other hand, A. agrarius and ICR mice to analyze their survival rate and frequency of micronuclei in peripheral polychromatic erythrocytes after irradiation (0, 0.5, 1, 3, 5, 7, 9 Gy). The $LD_{50/30}$ of A. agrarius and ICR mice were approximately 5 Gy and 7Gy, respectively. The results of the study reveal that wild A. agrarius have a high potential as a biological monitoring system to determine the impact of radiation effect in areas such as those within the vicinity of nuclear power plants.

  • PDF

Super-giant Magneto-Impedance Effect of a LC-resonator Using a Glass-Coated Amorphous Microwire

  • Lee, Heebok;Kim, Yong-Seok;Yu, Seong-Cho
    • Journal of Magnetics
    • /
    • v.7 no.4
    • /
    • pp.160-164
    • /
    • 2002
  • A new discovery of the super-giant magneto-impedance (SGMI) effect was found out in a LC-resonator consisted of a glass-coated amorphous $CO_{83.2}B_{3.3}Si_{5.9}Mn_{7.6}$ microwire. The measurement was carried out at high frequency range from 100 MHz up to 1 GHz of an ac-current flowing along the wire and at varying axial dcmagnetic field in its range of $\pm$120 Oe. The wires, about 16${\mu}m$ in diameter, were fabricated by a glass-coated melt spinning technique. The shape of the impedance curves plotted vs. a dc-field is changing dramatically with the frequency. The phase angle was also strongly dependent on this field. The external dc-magnetic field changes the circumferential permeability as well as the penetration depth, both in turn change the impedance of the sample. The drastic increments of SGMI at high frequency can be understood in terms of the LC-resonance phenomena. The sudden change of the phase angle, as large as $180^{\circ}$ evidenced the occurrence of the resonance at a given intensity of the external dc-field. The maximum ratio of SGMI reached in the experiment by precise tuning frequency equals 450,000% at the frequency of around 551.9075 MHz.

DC V-I Characteristics of a High Temperature Superconductor for a 600 kJ Superconducting Magnetic Energy Storage Device in an Oblique External Magnetic Field (경사 외부자장에 대한 600 kJ급 SMES용 HTS도체의 DC V-I 특성)

  • Li, Zhu-Yong;Ma, Yong-Hu;Ryu, Kyung-Woo;Choi, Se-Yong;Kim, Hae-Jong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.1
    • /
    • pp.79-84
    • /
    • 2008
  • We are developing a small-sized high temperature superconducting magnetic energy storage (HTS-SMES) magnet with the nominal storage capacity of 600 kJ, which provides electric power with high quality to sensitive electric loads. Critical current and N-value of a high temperature superconductor with large current, which was selected for the development of the 600 kJ HTS-SMES magnet, were investigated in various oblique external magnetic fields. Based on the critical current and N-value measured for the short sample conductor, we discussed the DC V - I characteristic of a model coil fabricated with the same conductor of 500 m. The results show that the measured critical current and N-value of the conductor for parallel field are constant in external magnetic fields less than about 0.2 T. However, for oblique fields, its critical current and N -value abruptly decrease in all external magnetic fields. Moreover, the measured critical current of the model coil well agrees with the numerically calculated one based on the DC V - I characteristic measured for the short sample conductor. This suggest that losses and critical currents for an HTS-SMES magnet made up of a high temperature superconductor with anisotropic characteristic are predictable from the data of a short sample conductor.

Flexural Behavior Characteristics of Steel I-Beam Strengthened by the Post-tensioning Method on the Field Experiment (현장실험을 통한 외부 후긴장 Steel I-Beam의 휨 거동 특성)

  • Cho, Doo-Yong;Park, Dae-Yul;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.151-158
    • /
    • 2002
  • Recently, the externally prestressed unbonded steel I-beam bridges have been increasingly built. The mechanical behavior of prestressed steel I-beams which are with external unbonded tendon is different from that of normal bonded PSC beams in a point of that the slip of tendons at deviators and the change of tendon eccentricity occurs, when external loads are applied in external unbonded steel I-beams. The concept of prestressing steel structures has not been widely considered, in spite of long and successful history of prestressing concrete members. In this study, The field experiment on prestressed steel I-beams has been performed in the various aspects of prestressed I-beam including the tend on type and profile.

Magnetic Creep in Narrow Channel (좁은 Channel에서의 자기적 Creep)

  • 박영문
    • 전기의세계
    • /
    • v.23 no.2
    • /
    • pp.55-61
    • /
    • 1974
  • Nature of magnetic creep phenomena in low coercive force films(Ni 80%-Fe 20%) in form of narrow channels imbedded in high coercive force films is studied in this work. Aluminium is evaporated on the hot glass substrate and eched free in the shape of narrow channels by photoetoetching method. then, Permalloy(Ni 80%, Fe 20%) is deposited on these Aluminium substrate under the uniform field of 30(Oe) to introduce anisotropy. Permalloy film on Al has a high coercive force and one on the substrate devoid of Al has how coercive force. Magnetic revers domain which is introduced at the end of channel grows under the a.c field in hard axis direction, in spite of very weak d.c field in easy axis direction. This creeping is investigated as a function of external fields and channel widths. Permalloy film thickness is 500.angs.-900.angs. and channel widths are 40, 51, 65, 81, 115.mu. respectively. Creeping increases as external field increases while it decreases with channel width decrease. Creep velocity in channels depends on the a.c field along hard axis, d.c field along easy axis and channel widths and its range is 1-10cm/sec in this experiment. From study of dependence of creep velocity on channel width, it can be concluded that creep velocity is expressed in form of v=v$_{0}$ exp .alpha.(H-H$_{0}$) where .alpha. is a function of a.c field along hard axis and H is driving d.c field along easy axis, H$_{0}$ is not a coercive force of film as usuall expected but the d.c threshold field along easy axis which is a function of channel width. This characteristic is also confirmed by the study of dependence of creep velocity upon easy axis field strength. Value of .alpha. obtained is 1.3-2.3cm/sec We depending upon film charactor, hard axis field strength and frequency.uency.

  • PDF