• Title/Summary/Keyword: extension matrix

Search Result 181, Processing Time 0.026 seconds

Approximate natural vibration analysis of rectangular plates with openings using assumed mode method

  • Cho, Dae Seung;Vladimir, Nikola;Choi, Tae Muk
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.3
    • /
    • pp.478-491
    • /
    • 2013
  • Natural vibration analysis of plates with openings of different shape represents an important issue in naval architecture and ocean engineering applications. In this paper, a procedure for vibration analysis of plates with openings and arbitrary edge constraints is presented. It is based on the assumed mode method, where natural frequencies and modes are determined by solving an eigenvalue problem of a multi-degree-of-freedom system matrix equation derived by using Lagrange's equations of motion. The presented solution represents an extension of a procedure for natural vibration analysis of rectangular plates without openings, which has been recently presented in the literature. The effect of an opening is taken into account in an intuitive way, i.e. by subtracting its energy from the total plate energy without opening. Illustrative numerical examples include dynamic analysis of rectangular plates with rectangular, elliptic, circular as well as oval openings with various plate thicknesses and different combinations of boundary conditions. The results are compared with those obtained by the finite element method (FEM) as well as those available in the relevant literature, and very good agreement is achieved.

Effect of Sb on the Creep Behavior of AZ31 Alloy (AZ31합금의 크립특성에 미치는 Sb의 영향)

  • Son, Geun-Yong;TiAn, Su-Gui;Kim, Gyeong-Hyeon
    • 연구논문집
    • /
    • s.33
    • /
    • pp.137-145
    • /
    • 2003
  • The effects of antimony addition on the microstructures and creep behavior of AZ31 magnesium alloy have been investigated. Constant load creep tests were carried out at temperatures ranging from $150^{\circ}C$ to $200^{\circ}C$, and an initial stress of 50MPa for AZ31 alloys containing antimony up to 0.84% by weight. Results show that small additions of antimony to AZ31 effectively decreased the creep extension and steady state creep rates. The steady state creep rate of AZ31 was reduced 2.5 times by the addition of 0.84% of antimony. The steady state creep rate of AZ31-0.84Sb alloy was controlled by dislocation climb in which the activation energy for creep was 128 kJ/mole. The microstructure of as-cast AZ31-0.84%Sb alloy showed the presence of $Mg_3Sb_2$ precipitates dispersed throughout the matrix. The main reason for the higher creep resistance in AZ31-Sb alloys is due to the presence $Mg_3Sb_2$, which effectively hindered the movement of dislocations during the elevated temperature creep.

  • PDF

The Relationship Between Hydrogen Trapping Behavior and SSCC Suceptibility of API X60/65 Grade Steels

  • Lee, Jae Myung;Kim, Jin Suk;Kim, Kyoo Young
    • Corrosion Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.109-116
    • /
    • 2003
  • It is well known that SSCC (sulfide stress corrosion cracking) is caused by drastic ingression of hydrogen during the service and accumulation of hydrogen near the potential crack initiation site in the material. It is important to characterize the hydrogen trapping behavior to evaluate the service performance of the high strength pipeline steels. In this study. the relationship between the hydrogen trapping behavior and SSCC susceptibility is evaluated in terms of alloy composition, microstructure and carbide behavior. The hydrogen trapping behavior was measured by electrochemical hydrogen permeation test cell (Devanathan cell). The SSCC susceptibility is evaluated by constant extension rate test and constant strain lest method. The hydrogen trapping behavior is affected greatly by microstructure and nature of carbide particles. The fine TiC, and NbC in the matrix of ferritic structure acts as strong irreversible trap sites whereas the bainitic structure acts as reversible trap site. The SSCC susceptibility is closely related to not only the hydrogen trapping behavior but also the loading condition. As the activity of reversible trap site increases, SSCC susceptibility decreases under static loading condition below yield strength, whereas SSCC susceptibility increases under dynamic loading condition or above yield strength. As the activity of irreversible trap site increases. SSCC susceptibility increases regardless of loading condition. It is cased by the mixed effect of dislocation on hydrogen diffusion and trapping behavior.

An Application of High-Power Ultrasound to Rubber Recycling

  • Hong, Chang-Kook;Isayev, A.I.
    • Elastomers and Composites
    • /
    • v.38 no.2
    • /
    • pp.103-121
    • /
    • 2003
  • The application of powerful ultrasound to rubber recycling is a very recent field of study. An ultrasonic field creates high frequency extension-contraction stresses by acoustic cavitation. The breakdown of rubber network occurs primarily around pulsating cavities due to the highest level of strain produced by high-power ultrasound. Stronger reductions of cross-link density were observed at a higher pressure, indicating an important role of pressure during ultrasonic recycling. Visible bubbles were observed during ultrasonic treatment as a proof of acoustic cavitation. Shearing effect has a significant influence on improving the efficiency of ultrasonic treatment. After the ultrasonic treatment, the cross-link densities of NR/SBR blends were lower than those of NR and SBR due to the reduced degree of unsaturation and chemical reactions. Carbon black fillers increase the probability of bond scission during ultrasonic treatment, due to the restricted mobility. The mechanical properties of ground tire rubber (GRT)/HDPE blends were improved by ultrasonic treatment and dynamic revulcanization. Ultrasonic treatment of GRT in the presence of HDPE matrix was found to give better mechanical properties due to the chemical reactions between rubber and plastic phases.

Generalized Orthogonal Matching Pursuit (일반화된 직교 매칭 퍼슛 알고리듬)

  • Kwon, Seok-Beop;Shim, Byong-Hyo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.2
    • /
    • pp.122-129
    • /
    • 2012
  • As a greedy algorithm reconstructing the sparse signal from underdetermined system, orthogonal matching pursuit (OMP) algorithm has received much attention in recent years. In this paper, we present an extension of OMP for pursuing efficiency of the index selection. Our approach, referred to as generalized OMP (gOMP), is literally a generalization of the OMP in the sense that multiple (N) columns are identified per step. Using the restricted isometry property (RIP), we derive the condition for gOMP to recover the sparse signal exactly. The gOMP guarantees to reconstruct sparse signal when the sensing matrix satisfies the RIP constant ${\delta}_{NK}$ < $\frac{\sqrt{N}}{\sqrt{K}+2\sqrt{N}}$. In addition, we show recovery performance and the reduced number of iteration required to recover the sparse signal.

Thermal Stability of Trifunctional Epoxy Resins Modified with Nanosized Calcium Carbonate

  • Jin, Fan-Long;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.334-338
    • /
    • 2009
  • Trifunctional epoxy resin triglycidyl paraaminophenol (TGPAP)/$CaCO_3$ nanocomposites were prepared using the melt blending method. The effects of nano-$CaCO_3$ content on the thermal behaviors, such as cure behavior, glass transition temperature ($T_g$), thermal stability, and the coefficient of thermal extension (CTE), were investigated by several techniques. Differential scanning calorimetry (DSC) results indicated that the cure reaction of the TGPAP epoxy resin was accelerated with the addition of nano-$CaCO_3$. When the nano-$CaCO_3$ content was increased, the $T_g$ of the TGPAP/$CaCO_3$ nanocomposites did not obviously change, whereas the crosslinking density was linearly increased. The nanocomposites showed a higher thermal stability than that of the neat epoxy resin. This result could be attributed to the increased surface contact area between the nano-$CaCO_3$ particles and the epoxy matrix, as well as the high crosslinking density in the TGPAP/$CaCO_3$ nanocomposites. The CTE of the nanocomposites in the rubbery region was significantly decreased as the nano-$CaCO_3$ content was increased.

On-Site Corrosion Behavior of Water-Treated Boiler Tube Steel

  • Seo, Junghwa;Choi, Mihwa;He, Yinsheng;Yang, Seok-Ran;Lee, Je-Hyun;Shin, Keesam
    • Applied Microscopy
    • /
    • v.45 no.3
    • /
    • pp.177-182
    • /
    • 2015
  • The boiler tubes of X20CrMoV12.1 used in fossil-fired power plants were obtained and analyzed for the effect of water treatment on the steam corrosion-induced oxide scale in an effort to better understand the oxide formation mechanism, as well as pertinent method of maintenance and lifetime extension. The specimens were analyzed using various microscopy and microanalysis techniques, with focuses on the effect of water treatment on the characters of scale. X-ray diffraction analysis showed that the scales of specimens were composed of hematite ($Fe_2O_3$), magnetite ($Fe_3O_4$), and chromite ($FeCr_2O_4$). Electron backscatter diffraction analysis showed that the oxides were present in the following order on the matrix: outer $Fe_2O_3$, intermediate $Fe_3O_4$, and inner $FeCr_2O_4$. After all volatile treatment or oxygenated treatment, a dense protective $Fe_2O_3$ layer was formed on the $Fe_3O_4$ layer of the specimen, retarding further progression of corrosion.

A Study on the Optimal Design of Automotive Gas Spring (차량용 가스스프링의 최적설계에 관한 연구)

  • Lee, Choon Tae
    • Journal of Drive and Control
    • /
    • v.14 no.4
    • /
    • pp.45-50
    • /
    • 2017
  • The gas spring is a hydropneumatic adjusting element, consisting of a pressure tube, a piston rod, a piston and a connection fitting. The gas spring is filled with compressed nitrogen within the cylinder. The filling pressure acts on both sides of the piston and because of area difference it produces an extension force. Therefore, a gas spring is similar in function compare to mechanical coil spring. Conversely, optimization is a process of finding the best set of parameters to reach a goal while not violating certain constraints. The AMESim software provides NLPQL (Nonlinear Programming by Quadratic Lagrangian) and GA (genetic algorithm) for optimization. The NLPQL method builds a quadratic approximation to the Lagrange function and linear approximations to all output constraints at each iteration, starting with the identity matrix for the Hessian of the Lagrangian, and gradually updating it using the BFGS method. On each iteration, a quadratic programming problem is solved to find an improved design until the final convergence to the optimum design. In this study, we conducted optimization design of the gas spring reaction force with NLPQL.

Development of Web-based User Script Linking System for Three-dimensional Robot Simulation (3차원 로봇 시뮬레이션 환경을 위한 웹 기반의 사용자 스크립트 연동 시스템 개발)

  • Yang, Jeong-Yean
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.2
    • /
    • pp.469-476
    • /
    • 2019
  • Robotic motion is designed by the rotation and the translation of multiple joint coordinates in a three-dimensional space. Joint coordinates are generally modeled by homogeneous transform matrix. However, the complexity of three dimensional motions prefers the visualization methods based on simulation environments in which models and generated motions work properly. Many simulation environments have the limitations of usability and functional extension from platform dependency and interpretation of predefined commands. This paper proposes the web-based three dimensional simulation environment toward high user accessibility. Also, it covers the small size web server that is linked with Python script. The non linearities of robot control apply to verify the computing efficiency, the process management, and the extendability of user scripts.

Development of a Novel Spawn (Block Spawn) of an Edible Mushroom, Pleurotus ostreatus, in Liquid Culture and its Cultivation Evaluation

  • Zhang, Wei-Rui;Liu, Sheng-Rong;Kuang, Yun-Bo;Zheng, Shi-Zhong
    • Mycobiology
    • /
    • v.47 no.1
    • /
    • pp.97-104
    • /
    • 2019
  • Mushroom cultivation has gained increased attention in recent years. Currently, only four types of spawn, including sawdust spawn, grain spawn, liquid spawn, and stick spawn, are commonly available for mushroom cultivation. This limited spawn diversity has led to difficulty in selecting suitable inoculum materials in some cultivation. In this study, three small blocks of lignocellulosic agro-wastes and one block of a synthetic matrix were prepared as support for growing Pleurotus ostreatus in liquid medium. Mycelium-adsorbed blocks were then evaluated for their potential as block spawn for fructification. Our results indicated that the edible fungus was adsorbed and abundantly grew internally and externally on loofah sponge and synthetic polyurethane foam (PUF) supports and also has the ability to attach and grow on the surface of sugarcane bagasse and corncob supports. The mycelia of P. ostreatus adhered on corncob exhibited the highest metabolic activity, while those on the PUF showed the least activity. Mycelial extension rates of block spawns made of agro-waste materials were comparable to that of sawdust spawn, but the block spawn of PUF showed a significantly lower rate. No significant differences in cropping time and yield were observed among cultivations between experimental block spawns and sawdust spawns. Moreover, the corncob block spawn maintained its fruiting potential during an examined period of 6-month storage. The developed block spawn could be practically applied in mushroom cultivation.