• Title/Summary/Keyword: extension matrix

Search Result 181, Processing Time 0.028 seconds

Basis Translation Matrix between Two Isomorphic Extension Fields via Optimal Normal Basis

  • Nogami, Yasuyuki;Namba, Ryo;Morikawa, Yoshitaka
    • ETRI Journal
    • /
    • v.30 no.2
    • /
    • pp.326-334
    • /
    • 2008
  • This paper proposes a method for generating a basis translation matrix between isomorphic extension fields. To generate a basis translation matrix, we need the equality correspondence of a basis between the isomorphic extension fields. Consider an extension field $F_{p^m}$ where p is characteristic. As a brute force method, when $p^m$ is small, we can check the equality correspondence by using the minimal polynomial of a basis element; however, when $p^m$ is large, it becomes too difficult. The proposed methods are based on the fact that Type I and Type II optimal normal bases (ONBs) can be easily identified in each isomorphic extension field. The proposed methods efficiently use Type I and Type II ONBs and can generate a pair of basis translation matrices within 15 ms on Pentium 4 (3.6 GHz) when $mlog_2p$ = 160.

  • PDF

BINARY TRUNCATED MOMENT PROBLEMS AND THE HADAMARD PRODUCT

  • Yoo, Seonguk
    • East Asian mathematical journal
    • /
    • v.36 no.1
    • /
    • pp.61-71
    • /
    • 2020
  • Up to the present day, the best solution we can get to the truncated moment problem (TMP) is probably the Flat Extension Theorem. It says that if the corresponding moment matrix of a moment sequence admits a rank-preserving positive extension, then the sequence has a representing measure. However, constructing a flat extension for most higher-order moment sequences cannot be executed easily because it requires to allow many parameters. Recently, the author has considered various decompositions of a moment matrix to find a solution to TMP instead of an extension. Using a new approach with the Hadamard product, the author would like to introduce more techniques related to moment matrix decompositions.

Space Deformation of Parametric Surface Based on Extension Function

  • Wang, Xiaoping;Ye, Zhenglin;Meng, Yaqin;Li, Hongda
    • International Journal of CAD/CAM
    • /
    • v.1 no.1
    • /
    • pp.23-32
    • /
    • 2002
  • In this paper, a new technique of space deformation for parametric surfaces with so-called extension function (EF) is presented. Firstly, a special extension function is introduced. Then an operator matrix is constructed on the basis of EF. Finally the deformation of a surface is achieved through multiplying the equation of the surface by an operator matrix or adding the multiplication of some vector and the operator matrix to the equation. Interactively modifying control parameters, ideal deformation effect can be got. The implementation shows that the method is simple, intuitive and easy to control. It can be used in such fields as geometric modeling and computer animation.

ON THE FI-EXTENDING MODULES

  • Min, Kang-Joo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.16 no.2
    • /
    • pp.79-88
    • /
    • 2003
  • In this paper, we study properties of a free normalizing extension ring of a FI-extending ring. We develop properties of formal triangular matrix rings and FI-extending rings. Several results on the quasi-extending modules are obtained.

  • PDF

JORDAN HIGHER DERIVATIONS ON TRIVIAL EXTENSION ALGEBRAS

  • Vishki, Hamid Reza Ebrahimi;Mirzavaziri, Madjid;Moafian, Fahimeh
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.247-259
    • /
    • 2016
  • We first give the constructions of (Jordan) higher derivations on a trivial extension algebra and then we provide some sufficient conditions under which a Jordan higher derivation on a trivial extension algebra is a higher derivation. We then proceed to the trivial generalized matrix algebras as a special trivial extension algebra. As an application we characterize the construction of Jordan higher derivations on a triangular algebra. We also provide some illuminating examples of Jordan higher derivations on certain trivial extension algebras which are not higher derivations.

THE BASIC KONHAUSER MATRIX POLYNOMIALS

  • Shehata, Ayman
    • Honam Mathematical Journal
    • /
    • v.42 no.3
    • /
    • pp.425-447
    • /
    • 2020
  • The family of q-Konhauser matrix polynomials have been extended to Konhauser matrix polynomials. The purpose of the present work is to show that an extension of the explicit forms, generating matrix functions, matrix recurrence relations and Rodrigues-type formula for these matrix polynomials are given, our desired results have been established and their applications are presented.

Texture Analysis and Classification Using Wavelet Extension and Gray Level Co-occurrence Matrix for Defect Detection in Small Dimension Images

  • Agani, Nazori;Al-Attas, Syed Abd Rahman;Salleh, Sheikh Hussain Sheikh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.2059-2064
    • /
    • 2004
  • Texture analysis is an important role for automatic visual insfection. This paper presents an application of wavelet extension and Gray level co-occurrence matrix (GLCM) for detection of defect encountered in textured images. Texture characteristic in low quality images is not to easy task to perform caused by noise, low frequency and small dimension. In order to solve this problem, we have developed a procedure called wavelet image extension. Wavelet extension procedure is used to determine the frequency bands carrying the most information about the texture by decomposing images into multiple frequency bands and to form an image approximation with higher resolution. Thus, wavelet extension procedure offers the ability to robust feature extraction in images. Then the features are extracted from the co-occurrence matrices computed from the sub-bands which performed by partitioning the texture image into sub-window. In the detection part, Mahalanobis distance classifier is used to decide whether the test image is defective or non defective.

  • PDF

Dynamic response analysis for structures with interval parameters

  • Chen, Su Huan;Lian, Hua Dong;Yang, Xiao Wei
    • Structural Engineering and Mechanics
    • /
    • v.13 no.3
    • /
    • pp.299-312
    • /
    • 2002
  • In this paper, a new method to solve the dynamic response problem for structures with interval parameters is presented. It is difficult to obtain all possible solutions with sharp bounds even an optimum scheme is adopted when there are many interval structural parameters. With the interval algorithm, the expressions of the interval stiffness matrix, damping matrix and mass matrices are developed. Based on the matrix perturbation theory and interval extension of function, the upper and lower bounds of dynamic response are obtained, while the sharp bounds are guaranteed by the interval operations. A numerical example, dynamic response analysis of a box cantilever beam, is given to illustrate the validity of the present method.

OPERATIONAL IDENTITIES FOR HERMITE-PSEUDO LAGUERRE TYPE MATRIX POLYNOMIALS AND THEIR APPLICATIONS

  • Bin-Saad, Maged G.;Pathan, M.A.
    • Honam Mathematical Journal
    • /
    • v.41 no.1
    • /
    • pp.35-49
    • /
    • 2019
  • In this work, it is shown that the combination of operational techniques and the use of the principle of quasi-monomiality can be a very useful tool for a more general insight into the theory of matrix polynomials and for their extension. We explore the formal properties of the operational rules to derive a number of properties of certain class of matrix polynomials and discuss the operational links with various known matrix polynomials.

EFFICIENT ALGORITHM FOR FINDING THE INVERSE AND THE GROUP INVERSE OF FLS $\gamma-CIRCULANT$ MATRIX

  • JIANG ZHAO-LIN;XU ZONG-BEN
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.45-57
    • /
    • 2005
  • An efficient algorithm for finding the inverse and the group inverse of the FLS $\gamma-circulant$ matrix is presented by Euclidean algorithm. Extension is made to compute the inverse of the FLS $\gamma-retrocirculant$ matrix by using the relationship between an FLS $\gamma-circulant$ matrix and an FLS $\gamma-retrocirculant$ matrix. Finally, some examples are given.