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Xiaoping Wang*, Zhenglin Ye, Yaqin Meng and Hongda Li
Department of Mathematics and Information Science, Northwestern Polytechnical University XV an P.R.China

Abstract — In this papei; a new technique of space deformation for parametric surfaces with so-called extension function (EF) 
is presented. Firstly, a special extension function is introduced. Then an operator matrix is constructed on the basis of EE 
Finally the deformation of a surface is achieved through multiplying the equation of the surface by an operator matrix or 
adding the multiplication of some vector and the operator matrix to the equation. Interactively modifying contr어 parameters, 
ideal deformation effect can be got. The implementation 아lows that the method is simple, intuitive and easy to control. It can 
be used in such 佰왜ds as geometric modeling and computer animation.
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1. Introduction

In the field of geometric modeling, the advent of 
non-uniform rational B-splines brought us a nearly 
perfect approach for mathematical description of free­
form shape. However the interactive technique (changing 
weight factor or knot vector, moving control points) 
accompanying it for shape modification is limited. 
Therefore, to generate complex shape, people have to 
draw support from others high-level techniques for shape 
modification free-form or space deformation. So far, 
considerable achievements have been reached in research 
on those deformations and diversified methods of 
deformation have been playing an important role in 
practice. Some of them have become the core of certain 
commercial CAD/CAM softwares. Nevertheless finding 
new, effective and intuitive deformation approaches is 
still one increasingly significant research field in computer 
graphics.

Certainly we already have so many deformation 
methods. However, On the whole, those and other 
methods concerned still have room for improvement in 
such aspects as exact control of deformation region, 
quantitative control of modification extent and guarantee 
of continuity between deformed and 니ndeformed region 
in local deformation or shape modification. Especially 
the existing techniques for shape modification among 
them direct only to NURBS [30], So people can't help 
to ask whether there are some techniques that are more 
simple, easy to control and fit for deformation or shape 
modification of general parametric surfaces.

In answer to above question, we develop the technique 
of deformation based extension function for parametric
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surface. It can not only carry on shape modification b니t 
also yield relatively arbitrary shape. Unlike traditional 
methods, its main thoughts are acting on a surface's 
equation with the operator matrix constructed by so- 
called extension function to alter the shape of the s나！face. 
As we introduce control parameters with a different 
attribute, the method avoids oneness of the control 
means in traditional ways and increases the control 
precision to some extent. It is fit for any surfaces but 
those expressed by implicit form. Concrete manipulation 
is very simple and easy due to its application without 
any auxiliary tool.

The rest of the paper is structured in 5 sections. 
Secton 2 reviews existing methods. Section 3 provides 
the definition of EE Section 4 describes the mathematical 
model and others key details of our method. Section 5 
shows some performance examples. Section 6 concludes 
the paper with comparison and ftirther research directions.

2・ Previous Work

Global and local deformation [1] is the first modeling 
technique of deformation introduced into CAD/CAM 
field. This method and its improvement [2] can conduct 
regular deformation (for example, twisting, tapping, 
bending, rotating and scaling), but it is not easy to yield 
arbitrary shape with them. Free-form deformation (FFD) 
[3] overcomes the shortcoming of the above method. 
As is known to all, the central thoughts of geometric 
modeling are choosing regular shape information (such 
as point, line, plane etc.) and special weight factors, 
taking the weighted average of them and thus expressing 
a complex shape. In fact, FFD also make use of the 
ideas: firstly express a complex shape formed by infinite 
points through weighted avem응r of relatively few control 
points and then move those control points to induce 
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deformation of that complex shape while the local 
coordinates of object points are deemed to remain 
unchanged (the topological structure of deformation 
object is fixed) [5]. FFD is one of the most versatile 
and powerful deformation tools, but there yet are some 
unideal aspects in implementation. With this method it 
is not easy for deformation to reach anticipated effect 
exactly. Exact placement of object points is also hard to 
achieve. Literatures [6, 7, 8, 9, 10] improved FFD in 
shape of space embedded and basis function and used 
their results in human body animation and dynamic 
flexible deformation, but their basic principles accord 
with FFD. Those approaches increase control flexibility 
and meanwhile bring new troubles. Always they need 
to solve complex nonlinear equations with numerical 
method. Moreover the problem of continuity between 
adjoining deformation regions in different lattices arises. 
And extended free-form deformation (EFFD) is based 
on the same mathematic formula as FFD [4], but its 
auxiliary tool is a complex lattice formed by several 
lattices with arbitrary shape. In local deformation, 
however, it is not easy to determine the number of 
subdivision of the initial lattice and thus build the 
appropriate lattice. By introducing constraint points Hsu 
proposed direct manipulation of free-form deformation 
[14] that is an improvement of FFD. Though by it 
deformation can satisfy the layout of object points 
exactly, its implementation involves finding 난le best 
solution, in the least squares sense, to the system of 
complex equations. All those methods improve FFD in 
varying degrees, increase control flexibility and can 
achieve a variety of deformations. However, on the whole, 
as existing techniques of deformation adopt weight 
factors or points with parallel status as control elements 
they have some shortcomings that the properties of 
their control means are unitary. We think the unitary 
property is one of the reasons why their controllability 
is 냖nideai and deformation effects are stiff. Recently 
another rather better improvement of FFD has been 
published [31]. Unlike above methods, axial deformation 
[11] takes a curve as control means. The method is good 
to generate deformation such as stretching, scaling, 
bending, twisting and so on. However, as its degree of 
freedom for control is limited, so is the effect of the 
deformation. It would be not easy to yield an arbitrary 
shaped bump by AxDf, for instance. Wires [12]. a 
generalization of AxDf, can be used in creating wrinkled 
surfoce and stitching geometry together. Literature [13] 
presented an approach with the degree of freedom 
between FFD's and AxDf's of which the control tools 
are two parametric surfaces. Moreover, without any 
auxiliary tool, space deformation technique [15] uses 
specified points and displacements corresponding to 
them (called constraint) to control the defomation. And 
expectant shape can be achieved by choosing the 
solution satisfying the constraint. Whereas as the shape 
of deformation around a constraint point depends on so- 

called extrusion function, the last results of deformation 
don't closely correlate with the constraints. Besides the 
literature [16] provided a complementary method for 
deformation modeling, but it is short of intuitive and 
interactive control means. Due to introducing constraint 
points and radius the literature [17] presented a good 
technique of local deformation, which was improved so 
well by literature [18] that it can not only conduct 
deformation of points constraints but also lines, surfaces 
or volumes constraints. Leon et al. [21,20, 19] linked 
the control polyhedron of a surface with the mechanical 
equilibrium of a bar network using the force density 
concept Surface deformations are achieved by adjusting 
mechanical parameters according to the criterion of 
equilibrium (i.e., all kind of parameters satisfy a linear 
equation). Though its efcct of the deformation abounds 
in aesthetic felling, sophisticated results often needs 
s어vin흥 high-order system of linsr equations.

Above methods belong to the category of space 
deformation. Besides physics-based deformations [23, 
22, 24] consider mechanical principles such as kinetics, 
아asticity, inelasticity and attributes such as mass, friction, 
internal force, so its effects of deformation are even 
more close to actual life. Although the techniques once 
were celebrated for a while, they generally need a large 
amount of computation and lack interactive control 
means, which limits their application in practice.

And there are several representative approaches of 
shape modification that fall into the deformation category. 
Piegl proposed a method modifying the shape of rational 
B-spline surface [27], in which the control points and 
their weight factors are recomputed directly from the 
definition of NURBS. It is intuitive and comprehensible 
in actual application. However, more often than not, it 
requires knot insertion even to achieve even simple 
effect. Using a perspective function transformation of 
arbitrary origin O Sanches-Reyes developed another way 
c시led a simple technique for NURBS shape modification 
[28]. User input for the modification amounts only to 
choosing origin O and displacing a control point along 
the radial direction through O. As the technique depends 
on surface equation, it is fit for carrying on global 
modification. The literatures [32, 29] also put forward 
two methods of shape modification.

3. Extension Function and Its Proj^rties

Definition 1 Let C: 甲 (u, v)=0 be a simple 이osed 
curve in (w, v) planethe function(p(u, v) be continuous 
and have continuous partial derivatives with n-1-order 
over the curve. Once again let t/=((w, v)\(p(u, v)^ 0} 
represe마 a region enclosed by the curve. Then the 
composite function

E(u,v)^E(u,v,h,n) = - /如(p(U,v)<Q

1 (p(u,v)>0 
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is called extension function, where positive integer n君 2 
real number h^R. And curve C is called bound curve, 
n index and U support region.

Extension function has following properties:.

1) E(",v)|c=1.2°-华甲=0, Q<i=k+l,k,l<n-} 
du dv q

3) E(w,v) possesses extremal case similar to 
in the support region.

4. Mathematical Mod시 of Deformation

4.1. The deformation using arbitrary point O' as 
its extension or contraction center

Let p(서, v)=(x(u, v), v), z(w, v))r be a Cr surface
defined on the domain <2, where Q^R2; v) 
~E(u, v, hip n) extension functions whose the support 
regions belong to Q, where nW r, z, j=l, 2, 3; and Zb 
Z2, h unit vectors of linear independence.

/ 、 
*12(E12-1)

Write D= e2I(E21-1) E21 £23(£23-l)

、£31(丘31 —1) 832(^32—1) E33 丿

called operator matrix and take &户 ±1, i 丰 j, then after 
the deformation with O' as its center and 妃 /2, l3 as its 
extension or contraction directions, the deformed surface 
Pd(u, v) and the original one v) have following 
relation:

] TWhere卩(",卩)亏厂打彳("质3)以0〉％)。3刈)("〉％))气 

I一中*3」

[I1I2I3] denotes mixed product and (Z]Z2^) is a matrix
constructed by the vectors h in column form.

4.2. The geometric meaning of the deformation 
technique

Set matrix 厶=(佝)3x3, column vector +尤£

+•저시3=(4，2,3)X,

where X=(x{X2Jc3)t.

]Again let = ("仅3)厶((/2〉"3)仏〉”|)0〉％))', then

1 T
X二石亍i（甲 2Z3）（%）3x3（（&〉“3）（Z3>"i）（"X&））miM3）X

] 
iwd

T
(甲2,3)。勺)3x3['1&‘3]/X=(7]&，3)("”)3x33/2/3)

3

= £ %j아 i • 
i,j=l

Especially, %

1) when A=I, a疔i, j=l,2,3- X=»0=X, due
to X's arbitrariness, 二/, i.e., t=i

(2) holds;

2) when A=D(u, v)二(4)3乂 3, ie,二F(u, v), If we write

P(w,v)-O' =P[l]+p2i2^P3h，(2) can be expressed as

3 3「3 、

Pd(")=、£dijPjli+O' = Z、£dijPj L 
ij=\ i=l\j=l 丿

=^l2l3)D(piP2p3)T+O'

From this formula we can easily find the geometric 
meanings of the deformation defined by (1) is conductin응 

an affine transformation on the coordinates (/时必)' 

of the vector P(u, v)-O' in affine coordinate system 
[O',Z1,/2^3 L at every point 尸(허, v) on original surface 
within support region Q. And transform matrix is the 
operator matrix D(u, v)

The displacement of the deformation satisfies P(u, v) 
=Pd(M, v)-P(w, v)

仍 3)0]

=(71眾3)£)(01，2,3)七(71眾3)/(。1，2,3)'

=(，1裁3)(刀-/)(01。应3)'

f \
Pl

= (")(D-/) p2

財

4.3. The control means of the deformation model
Solving the problem of deformation not only lies in 

giving o니t deformation method itself, but what is more 
important is to bring forth some interactive control means 
accompanying the method. Generally speaking, it is 
hard for 니s to succeed only at one stroke, so we seldom 
get the anticipated effects through manipulating only 
once. In any case, shapes generated by computer system 
are rarely immediately acceptable and s니bsequent 
modifications are necessary, so when creating a method 
of deformation we bestow some degree of freedom on 
it, i.e., set up a number of parameters for shape control. 
Then we adjust these parameters so that the result of 
deformation approximates or reaches the anticipated 
effects at last. Let's review existing means of deformation 
and shape modification. Though they all have certain 
degree of freedom and can carry out interactive control, 
they can control deformation only to some extent 
q나antitatively. Often we get these 나nder the condition 
of losing those so that some side effects are yielded. 
Thereupon, it is not easy to control the deformation 
qualitatively. For example, in local deformation, using 
the methods such as literatures [2-15, 19-2니 it is not 
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easy to keep the 冀용ion beyond the deformation remain 
unaffected. And method in literature ［27, 28, 29, 30, 21, 
20,19］ direct only to B-spline, NURBS surface. Even 
for these surface controlling its defoimation region also 
requires degree elevation or knot insertion, which greatly 
increases the computational costs. Besides shape control 
for deformation in literature ［3］ needs moving the control 
points of parallelepiped lattice while traditional shape 
modification needs changing the vertex position of 
control polygon or its weight factors, but it is not clear 
that which points or its weight factors are best ones to 
be altered.

Our method can control the region over which 
deformation takes place exactly. In addition, with it we 
can adjust the shape qualitatively. Its control parameters 
consist of hih 环（j丰 j; z, ;=1,2,3）, n and bound curve 
C. In addition, extension or contraction center O' and 
vectors 坛 h also can be used to control the deformation. 
They all have obvious geometric meaning. Curve C 
controls the deformation region, vectors M l3 the 
principal directions, hg the magnitude of deformation, 
허（［丰 j） certain symmetric effects, n the continuity of 
deformed surface on the bound curve and O' the center 
of extension or contraction.

In process of deformation, we control deformation 
through the following means:

1） Change 膈 See Figure 4-12
2） Change 印，which can create some symmetrical 

effect,.
3） Change n, which can alter the sooth degree of the 

deformed surface over bound curve. For example, 
increasing n can make the deformed surface press 
close to the original surface near the bound curve. 
See Figure 2, 3 and 9.

4） Change bound curve, which can alter the re응ien 
over that the deformation takes place. See Figure 
3-4.

5） Change Z2, l3. See Figure 15-16.
6） Change the position vector O'. See Figure 10 and 

Figure 14.

Remark 4.1: Theoretically we can choose any curve 
like those described in the definition 1 as bound curve, 
But in actu사 application if we do so the infinite 
information of that kind of bound curve will make the 
interactive manipulation difficult. We must change infinite 
information into finite one. For example if we adopt circle 
as bound curve, we can e^ily control the deformation by 
adj댜sting only three parameters instead of wh이e curve.

4.4. The smooth degree of deformed surface on 
bound curve

Lemma If ", Z2, l3 are unit vectors of linear 
independence, （l{ ［호G） is a matrix constructed by the 
vectors lh Z2, l3 in their column form and / is a 3-order 
unit matrixthen it follows that

（2）
1 T

「厂7 7 ］（甲丿3）（（以"3）（73〉0［）（71>〈&）） =1

proof See section 3.4
Theorem Through the deformation （1）, the deformed 

surface possesses n-1-order continuity on bound curve.
proof Write D（w, v）=D, {dmD/dudv }=D^l）, to 

which pg" or （p曲）is similar, then from the properties 
of extension function it follows that

D 訓 £=이 © 느，

where Q<k,l<n-l,m=k+l7m= 1,2,A,n-1 （3）

Looking on the factors or the tenns of （1） as matrix 
function and taking the mixed partial derivative of it 
with respect to u and v we get

k I 1
（碱汚?爲이야而（시 w户

（（肇匕冊対出厶%））"結［招）（4）

Evaluating the two sides of （4） on curve C and using 
（3） and the lemma yields

（碱尸

where 0<k,l<n~~l and . OED.

3.5. The continuous transition of deformation 
over the intersection of two support regions

Let Dj be operator matrix corresponding to support 
regions U* enclosed by C, m corresponding index of Dh 
where 1=1,2.

If Ui I U2^ then the equation of transition surface 
for deformation over it is

1 rr
方，®，V）亏厂h（平』），。刀2（。2対3）仏叫）（，>%））「 

U1*2Z3J

0（M,v）-O'）+O'（^v）G U^U2 （5）

The deformed surface possesses nr 1 -order and n2-1- 
order continuity respectively on Q and C2 segment of 
CiYC2, where QYC2 denotes boundary. See
Figure 13, 22, 23.

In fact, taking the mixed partial derivative of （5） with 
respect to u and v we obtain

（而）辭=£手이£邙*）（时2俨

（J 시3泪3 시 시2））%糸#謨

k I i j 1
=£££ 야片w，시 3）（W辭）

（W陰;頒）（（&%）仏叫W%））?破寫禹
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Moreover, from the properties of extension function 
we get

= A^2).y?|(C|YC2)IC2

=0,1 <r-s-^-t,s,t<n2-l

Substituting it into (6) yields

花毕布忐(甲舞(D)汗

((&叫)仏刈)0%))况客)終|(gYCg 

=(臨户)|(c,YQ)IG ' °Vk+U이凯一1 

In a similar way we have

(pX'Ic.ycjic, = ^X+/)|(c,yc2)ic, ' 0<k+l,k,l<n2-l

Generally, let Dz be operator matrix corresponding to 

s니pport regions Ut enclosed by C(, az,- corresponding 
m

index of % where i=l,2, ; m. If I U苻鱼 then the
i— 1

equation of transition surface for deformation over it is

m
(Z1Z2Z3)n^((/2></3)(/3xZ1)(ZlxZ2))T

i=l

m
(p(M,v)-O')+O',(M,v)eI Ui

which has n — 1-order continuity respectively on C, 
m m

segment of Y Ci, where z=l,2, ; m and Y Ci denotes
i= 1 m 1

the boundary of I Ui. Then a uniform equation of
i= 1

deformation can be written as

1 rn
PX»，v) = -i-(Z1Z2Z3)n^((Z2xZ3)(/3xZ1)(Z1xZ2))r

i=[

m
(P(w,v)-O')+£)',(w,v)g I U" 

i=i

where 佑=0 or 1, D°=I, U?=Q-Ui, U；=U”
and obviously Y ( I E/M=Q.

gkM) i=l

Remark 4.2: If we want to adopt different principal 
directions over different support regions, the deformation 
should be carried sit in turn. Here the deformation can 
be form나lated in a recurrence form according to certain 
seq 나 ence.

샵.6・ The deformation of extension or contraction 
along radial direction with O* as center

Pd(払u) = (p(히,")T7)E+。',(M,v)G Q

Generally, with Oi as centers % as extension function 
defined over the same or disjoint support regions the 
deformation equation is

n
pd(u,v) = £(E,.-l)(p(",v)-0)+p(",v),(M,v)e Q 

i=l

4.7. The deformation of extension or contraction 
along a vector field

Let p(w,v)=(x(w,v), y(서,"), z(w,v))r be a Cr surface 
defined on the domain Q where QUJ*； E〃(国，v) 
=E(u,v,hij,n') extension functions whose the support 
regions belong to 12, where r, z,丿=1,2,3; and 
s(w, v) a unit vectors field.

/ 、 
缶 1一1 日]3-1

Set D= E21-l E22-l E23-l , then the deformed

顼时-1缶2-1 E33-1丿

surface pd(u,v) and the original one p(w,v) have 
following relation

Pd(払")=p(",v)+/)S(払卩)(",v)e Q

Similar to the section 4.1, now the control parameters 
involve index n, curve C and 如 In order to achieve 
some special effect such as symmetry, we can still 
multiply the elements of the matrix D by "-I" and 
increase the control flexibility.

In following special situations, we take /211-/122=^33, 

hy=0,件 j.

1) When S(w, v) is a constant vector, the deformation 
is extension or contraction along a fixed direction.

2) When S(w,v) is a tangent vector field of a surface, 
the deformation is extension or contraction along 
a tangent line at every points.

3) When s(u,v) is a normal vector field of a surface, 
the deformation is extension or contraction along 
a normal line at every points.

4.8. Major thought of the deformation
Motivated by the mould principle of foundry and 

manufacture industry, in this paper, we develop a new 
deformation model based on so-called extension function. 
The extension function and the operator matrix made 
of it correspond to mould. Adjusting every control 
parameter conesponds to changing the shape of the 
mould to achieve object expected. The operator matrix's 
acting on surface corresponds to extrusion or pouring. 
Its mathematical essentiality is that within certain range 
the coordinate space contracts or extends along certain 
directions with a certain point as its center while the 
magnitude of contraction and extension are variant 
depending on extension functions. If we adopt different 
extension functions in different direction, we can obtain 
rich deformation results. And coordinates beyond the 
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range remain to be unchangeable. Compared with 
existing methods, the thought is simple can easily be 
understood by user without advanced mathematical 
foundation.

5. Experimental Result

For the sake of simplicity, we only apply our method 
to a biquadratic Bezier surface and a plane to demonstrate 
it mainly in orthogonal coordinate system. We also 
adapt circle, ellipse and so on as the bound curve of 
deformation and let /z^=0(，手 j). Fig. 1 shows an 
undeformed biquadratic Bezier surface with control points 
(-4, -4, 2), (0, -5, 2.5), (4, -4, 2), (-4, 0, 2.5), (0, 1, 4.5), 
(4, 0, 2.5), (-4, 4, 2), (0, 5, 2), (4, 4, 2). Fig. 2 is the

Fig. 2. The index n=3, hu=h22=h33<Q,

deformed surface by taking a circle as bound curve, the 
point O' =(0, 0, 2.2) as the center of contraction, 3 as 
the index and /z11=/i22=^33<0. With 시 as the index and 
other control parameters similar to Fig. 2, Fig. 3 shows 
how the index influences the effect of the deformation. 
Figs. 4-12 reveal how the change of h”, h22 and h33 
affects the effect of the deformation, with0, 0) 
as the center of contraction. Fig. 13 displays a deformation 
with two intersecting support regions. Comparing with 
Fig. 10, Fig. 14 has the same control parameter윦 with 
Fig. 10 but €>'=(0, 0, 1.5). Figs. 15-16 display the 
difference of defbnnation due to taking res桜여iv이y l3 
=(1/73, 1/73), 13=(-1/73,-1/73,1/73), mean

Fig. 6, The deformation with /ii t<0, hn, ^3>0.

Fig. 4. The deformation with /i33<0, /in=h22<0. Fig. 8. The deformation with h33<Q, hn=fe>0.
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Fig. 14. The deformation with O'=(0,0,1.5).Fig. 9. The center of bound cir시e is (3/4, 3/4) with radius 1/18.

Fig. 15. Hie deformation with l리」JS, -1/^3, 니 JE l\= 
(1,0,0), 5,1,0).

Fig. 16. The deformation with l3=(-l/j3 , -1/^3 , 1/^3) l}- 
(l,0,0)J2-(0,1,0).

Fig. 13. The centers of two bound circles are respectively (3/4,1/ 
2), (1/2,3/4).

Fig. 17. The deformation with /z33>0, hu=h22=0, and bound 
curve 1-cos(7i(u2+v2)/4)=0.

Fig. 18. The deformation with h33>0, 如=奴끄(), and bound 
curve 1+cos(7t(u-v))-0.

while keeping Zi=(l,0,0) and Z2=(0,1,0). Fig. 17 아lows 
that we can create a ring-like shape if we choose such 

bound curve as 1-cos(7C(u24-v2)/4)=0. In actual ap­
plication, we can choose unclosed curve as bound curve.



30 International Journal of CAD/CAM Vol. 1, No. 1, pp. 23-32

Fig. 19. The deformation with ^33>0, hu=h22=0, and bound 
curve 1-cos (tt(u2-v2)/2)=0.

Fig. 20. The deformation with/?33>0, h]i=h22~0, bound curve 1- 
cos (27i(u24-v))=0 and a special support region.

Fig. 21. The deformation with h33>0, 如=/醇너)and bound 
curve 1-cos (3k(u2/3+v2/5)=O.

Fig. 23. The deformation with five intersecting support regions, 
three positive h33 and two negative h.33, all 如，h22 being zero, and 
all indexes being 3 and five circles respectively being bound curves.

For example, Fig. 18 is the deformed plane through 
usi햐응 1 +cos (k(u-v))=0 as bound curve and multiplying

h33 by exp ((-u2-v2)/2)). Figs. 19-20 displays that we can 
use unclosed curve (1-cos (2tc(u2+v))=0, 1+cos (tu(u2- 
v2)/2)=0) as bound curve for some particular purpose. 
Fig. 21 tells that we can simulate ripple if we use the 
curve 1-cos (3k(u2/3+v2/5))=0 as bound curve and 
multiply h33 by the factor exp (-u2-v2). Fig. 22 is achieved 
by taking 1+cos (k(u±v)/3)=0 as bound curve. Fig. 23 
shows that our method can generates a complex shape 
as ''multi-peak surface" and once again demonstrates 
the continuous transition of the deformation over the 
intersection of several support regions (the smooth degree 
on every bounding c낞rve can be adjusted by changing 
its corresponding index).

Remark 5.1 In certain special case, self-intersection 
may take place. For example, in the deformation 
illustrated by Fig. 5 if we increase hn,临 too much the 
deformed surface might intersects itself.

6. Comparison with Existing Methods

According to Barr's way [1] the deformation of surface 
is conducted mainly through following steps. First, 
convert the surface into a vector field by differentiating 
it. Then transform the vector field into another one 
according to a certain transformation rule for tangent 
vector. Finally integrate the new tangent vectors field to 
obtain the new position vectors equation of deformed 
surface. Obviou이y, by the method the deformation 
achieves figuration at one stroke. It is short of means 
for interactive control and not easy to 흉eneratg arbitrary 
shape. The major reason for this lies in that we cant 
foreknow the relation between the transformation matrix 
and the shape of new surface. Moreover, in complex 
case quadrature itself is not easy. However, our method 
need not first differentiate the surface and then into응rate. 
In addition, it has good controllability. As regards the 
techniques [3, 4], there are two troubled things. First, 
embed the object into lattices (convert the coordinates 
of object into the ones relative to the lattices) after the 
control points are determined according to the defor­
mation region of the object. Then adjust the position of 
the control points concerned to deform the lattice짛 such 
that the deformation of the lattices is passed to the 
inner object (i.e., comp나te the new global coordinates 
of object points in the deformed lattices corresponding 
to the same ones relative to the lattices). Thus an arbitrary 
shape is created. However, in those methods calculation 
concerned is completed with Bernstein or NURBS 
polynomial. Though the computation can be carried out 
through transforming the polynomial into the ones with 
power basis, the amount of computation is still very large. 
Moreover, in order to get an arbitrary shape, generally 
a lot of control points must be chosen, which induces 
new trouble. For example, people always can not make 
sure which control points should be moved. Even if 
they know to move which ones, the last effect of
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deformation is difficult to predicate. Especially in actual 
application overmany points result in screen clutter, 
which is disadvantageous to manipulation. Compared 
with FFD, RFFD [7] endows every control point with a 
weight factor so as to increase degree of freedom for 
deformation. The change of the effect of deformation 
ind니ced by adjusting the weight factors is difficult to 
predicate too, which greatly limits the use of the 
technique by the common user not knowing spline theory. 
And the implementation of AXDf [11] must adopt a 
curve as the axis on which a local frame field (axial 
coordinate systems) is defined and convert their local 
coordinates into the ones of axial coordinate system. Then 
the shape of the axis is changed with traditional curve­
editing techniques while the coordinates of object points 
relative to axial coordinate system keeps unchangeable. 
Lastly, the global coordinates of object points are 
computed. However the effect of deformation made by 
the method is dull. And it involves a large amount of 
computation in conversion between two kinds of 
coordinate. In contrast with above methods our one 
doesn't involve higher-degree polynomial and need no 
conversion between two kinds of coordinates in em­
bedding or after deformation of auxiliary tool. So using 
it there is no too large computing cost. Though it has 
few control parameters, due to its very simple process of 
use, rich effect of deformation can be got by contimious 
implementations. Moreover it can quantitatively foresee 
or control the effect of deformation. What is more 
important is that the method need not draw support 
from any auxiliary tool for deformation.

As for existing techniques modifying the shape of 
surface, the one given by literature [27] is carried on by 
following way: knot insertion, moving control points, 
adjusting weight factors. Nevertheless, using it to modify 
a certain shape and facing too many degree of freedom, 
user always can not determine whether to move points 
or to change weight factors. Depending on geometric 
terms such as point, displacement, literature [28] in­
troduced a perspective functional transformation of 
arbitrary center O with which the shape of surface 
modified is easy to expect. However it is still difficult 
to control the region of modification exactly or at will. 
In addition, another one introduced by the literature 
[28] can control position, 1-order or 2-order derivative 
through the control points of B-spline. However, for 
more constraint conditions it often need recur to knot 
insertion. When our method is used in shape modification 
of surface, its prominent advantage is that it possesses 
나niversality. It is fit for not only BezierB-SplineNURBS 
[30] s나rfaces but also any ones except those expressed 
by implicit function unlike the methods in literatures 
[27, 28] that directs only to BezierB-SplineNURBS 
surfaces. Furthermore, our method still has the following 
features:

1) It can control deformation region exactly and make

sure the undeformed region remain unaffected.
2) Used it in local deformation, the smooth degree of 

surface on bound curve can be chosen artificially.
3) Due to its simple mathematical background, user 

without advanced mathematical knowledge can 
operate it.

4) It combines shape modification and deformation.
5) Applied over different regions continuously or 

simultaneously it can create rich effect of defor­
mation.

We think further research should aims at constructing 
better extension function, locating the b。니nd curve, 
building a database of extension function and analyzi다g 
the geometric information inchided in the deformed 
surface of the original surface. As for the situation of 
space curve, we discuss through other articles.
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