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Abstract — In this paper, a new technique of space deformation for parametric surfaces with so-called extension function (EF)
is presented. Firstly, a special extension function is introduced. Then an operator matrix is constructed on the basis of EE.
Finally the deformation of a surface is achieved through multiplying the equation of the surface by an operator matrix or
adding the multiplication of some vector and the operator matrix to the equation. Interactively moditying control parameters,
ideal deformation effect can be got. The implementation shows that the method is simple, intuitive and easy to control. It can

be used in such fields as geometric modeling and computer animation.
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1. Introduction

In the field of geometric modehing, the advent of
non-unilform rational B-splines brought us a ncarly
perfect approach for mathematical description of Iree-
form shape. However the interactive technique (changing
weight factor or knot vector. moving control points)
accompanying it for shapc modification is limited.
Therefore, w0 generate complex shape, people have to
draw support from others high-level techniques for shape
modification free-form or space deformation. So far,
considerable achievements have been reached in research
on thosc deformations and diversified methods of
deformation have been playing an important rolc in
practice. Some of them have become the core ol certain
commercial CAD/CAM softwares. Nevertheless {inding
new, effective and intuitive deformation approaches is
still one increasingly sigmficant research field in computer
graphics.

Certainly we alrecady have so many detormation
methods. However, On the whole, those and other
methods concerned still have room {or improvement in
such aspects as exact control of deformation region,
quantitative control of modification extent and guarantee
of continuily between deformed and undeformed region
in local deformation or shape modification. Especially
the existing techniques for shape modification among
them direct only 10 NURBS [30]. So people can’t help
to ask whether there are some techniques that are more
simple. easy to control and fit for deformation or shape
modification of general parametric surfaces.

In answer to above question, we develop the technique
of deformation based extension function for parametric
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surface. 1t can not only carry on shape modification but
also yield relatively arbitrary shape. Unlike traditional
methods, its main thoughts are acting on a surfacc’s
equation with the operator matrix constructed by so-
called extension function to alter the shape of the surface.
As we introduce control parameters with a different
altribute, the method avoids oneness of the control
means in traditional ways and increascs the control
precision (o some extenl. It is fit for any surfaccs but
those expressed by implicit form. Concrete manipulation
is very simplc and easy due to its application without
any auxiliary tool.

The rest of the paper is structured in 5 sections.
Secton 2 reviews exisling methods. Section 3 provides
the definition of EF. Section 4 describes the mathematical
model and others key details of our method. Section 5
shows some perfomnance examples. Section 6 concludes
the paper with comparison and further rescarch directions.

2. Previous Work

Global and local deformation | 1] is the first modeling
technique of delormation introduced into CAD/CAM
field. This method and its improvement [2] can conduct
regular deformation (for cxample, twisting, tapping,
bending, rotating and scaling), but it is not easy to yicld
arbitrary shape with them. Free-form deformation (FETY)
[3] overcomes the shortcoming of the above method.
As is known (0 all, the central thoughts of geometric
modeling are choosing regular shape information (such
as point, line, plane etc.) and special weight factors,
taking the weighied average of them and thus expressing
a complex shape. In fact, FFD also make use of the
ideas: firstly express a complex shape [ormed by infinite
points through weighted average of relatively [ew control
points and then move those control points to induce
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deformation of that complex shape while the local
coordinates of object points are deemed 0 remain
unchanged (the topological structure of deformation
object 1s fixed) |5]. FFD is one of the most versatile
and powerful deformation tools, but there yet are some
unideal aspects in implementation. With this method it
is not easy for deformation to reach anticipated effect
exactly. Exact placement of object points is also hard to
achieve. Literatures [0, 7, &, 9, 10] improved FFD in
shape of space embedded and basis function and used
their results in human body animation and dynamic
flexible deformation, but their basic principles accord
with FFD. Those approaches increase controi flexibility
and meanwhile bring new troubles. Always they necd
to solve complex nonlinear equations with numerical
method. Moreover the problem of continuity between
adjoining deformation regions in different lattices arises.
And extended free-form deformation (EFFD) is based
on the same mathematic formula as FFD [4]. but its
avxiliary tool is a complex latticc formed by scveral
lattices with arbitrary shape. In local deformation,
however, it is not easy to determine the number of
subdivision of the initial latuce and thus build the
appropriate lattice. By introducing constraint points Hsu
proposed direct manipulation of frec-form deformation
[14] that is an improvement of FFD. Though by it
deformation can satisfy the layout of object points
exactly, its implementation involves linding the best
solution, in the least squares sense, to the system of
complex equations. All those methods improve FFD in
varying degrees, increase control flexibility and can
achieve a varicty of deformattons. However, on the whole,
as existing techniques of deformation adopt weight
factors or points with parallcl status as control elements
they have some shortcomings that the properties of
their control means ate unitary. We think the unitary
property is one of the reasons why their controllability
is unideal and deformation effects are stiff. Recently
another rather better improvement of FFD has been
published [31]. Unlike above methods, axial deformation
[L1] takes a curve as control means. The method is good
to generate deformation such as stretching, scaling,
bending, twisting and so on. However, as its degree of
freedom for control is limited, so is the effect of the
deformation. It would be not easy to yield an arbitrary
shaped bump by AxDf, for instance. Wires [12], a
generalization of AxDf, can be used in creating wrinkled
surface and stitching geometry together. Literature |13]
presented an approach with the degree of freedom
between FFD's and AxDf’s of which the control tools
are two parametric surfaces. Moreover, without any
auxiliary tool, space deformation technique [15) uses
specified points and displacements corresponding to
them {called constraint) to control the deformation. And
cxpectant shape can be achieved by choosing the
solution satisfying the constraint. Whereas as the shape
of deformation around a constraint point depends on so-

called extrusion function, the last results of deformation
don’t closely correlate with the constraints. Besides the
literature [16] provided a complementary method for
deformation modeling, but il s short of intnitive and
interactive control means. Due to introducing constraint
points and radius the literature {[7] presented a good
technique of local deformation, which was improved so
well by literature [18] that it can not only conduct
deformation of points constraints but also lines, surfaces
or volumes constraints. Léon et al. [21, 20, 19] linked
the control polyhedron of a surface with the mechanical
equilibrium of a bar network using the force density
concept Sorface deformations are achieved by adjusting
mechanical parameters according to the criterion of
equilibrium {i.c., all kind of parameters satisfy a linear
equation). Though its effect of the deformation abounds
in acsthetic felling, sophisticated results often needs
solving high-order system of lincar equations.

Above methods belong to the category of space
deformation. Besides physics-based deformations {23,
22, 24] consider mechanical principles such as kinetics,
elasticity, inelasticity and attribotes such as mass, friction,
internal force, so its effects of deformation are even
more close to actual life. Although the techniques once
were celebrated for a while, they generally need a large
amount of compuiation and lack interactive control
means, which limits their application in practice. -

And there are several representative approaches of
shape modification that fall into the deformation category.
Piegl proposed a method modifying the shape of rational
B-spline surface [27], in which the control points and
their weight factors are recomputed directly from the
definition of NURBS. It is intvitive and comprehensible
in actual application. However, morc often than not, it
requires knot insertion even to achieve even simple
effect. Using a perspective function transformation of
arbitrary origin O Sanches-Reyes developed another way
called a simple technique for NURBS shape modification
{28]. User input for the modification amounts only to
choosing origin O and displacing a control point along
the radial direction through O. As the technique depends
on surface equation, it is fit for carrying on global
modification. The literatures [32, 29] also put forward
two methods of shape modification.

3. Extension Function and Its Properties

Definition 1 Let C: ¢ (u, v)=0 be a simple closed
curve in («, v} planethe function @{«, v) be continuous
and have continuous partial derivatives with n-1-order
over the curve. Once again tet U={(u, v}l ¢(u, v)= 0}
represent a region enclosed by the curve. Then the
composite function

E(u,v)=E(u,v,im)=d € @(u,v)<0
1 K, v)>0



Xiavping Wang, et ol.

is called cxtension function, where positive integer n= 2
real number 2E R. And curve C is called bound curve,
n index and U/ support region.

Extension function has following properties:

1) E@,v)| =) 2‘7;(“ V)

(7] ' C

=0, 0<i=k+1kI<n-1

3) E(u,v) possesses extremal case similar to @(i,v)
in the support region.

4. Mathematical Model of Deformation

4.1, The deformation using arbitrary point Q' as
its extension or contraction center
Let p(u, v)=(x(t, v), ¥(u,v). z(u, )Y’ be a C" surface
defined on the domain 2, where QC R Ey(u, v)
=E(u, v, hy, n) extension functions whose the support
regions belong to 2, where n= r, i, j=1,2,3; and /),
L, I; unit vectors of lincar independence.

E, ek Ep—1) & Ex-1)
Write D=| g, (£, -1) £y enlEs-l)
E{En—1) &(Epn-1) Eyy

called operator matrix and take £=+1, { / j, then after
the deformation with Q' as its center and £, &, £ as its
extension or contraction directions, the deformed surface

pau, vy and the original onc p{(u,v) have [ollowing
relation:

PV =Fuv)(p(uyv)-0)+0', (u,v)e Q2 H

Where F(u,v)= ——(LL)D(LXL)Y X)L

T lzt 1
[/, ,1,] denotes mixed product and (1) 1:6;) is a matrix
constructed by the vectors {, I, I; in column form.

4.2. The geometric meaning of the deformation
technique
Set matrix A=(ay); x4, column vector X=xd,+x:l
+xly=(L L)X,

where X=(x, xzx_z)":

Again let = —— (1 L)AL I X (I X)) . then

lZ ll N
X= ” l l ](! I’Jli}(ag)zxg,((l”Xl])(hX!')(llxlg)) (l l_’ ‘)X
=, L,l T A @) (Bl X =) (), o)

—zﬂm

INE|
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Especially, \
1} when A=l ¢;=8y. i, j=1.2,3. X=3 xi=X. due
10 X’s arbitraniness, ={. i.e., i=1

{(2) holds;
2) when A=D(u, v)=(d,)s .5, 1.e., =F(u, v). Il we write

P(u,v)-0'=p 1, +p..+p;l; . (2) can be expressed as

3 i 3
P(u,v)= Z d,-}p_j-l,-+0'=2[ Zdu'l’i}i

INES! =1 j=1

=(l,lgl3)[)(p]pzp3)f+0'

From this formula wc can easily find the geometric
meanings of the defonmation defined by (1) 1$ conductmg
an afline transformation on the coordinates { py ps p,)
of the vector P{u.v)-0Q' n affine coordinate system
LO,E,.4,,2: 1, au cvery point P(u, v) on original surface
within support region € And transform matrix is the
operator matrix D(, v)

The displacement of the deformation satisfies P(xu, v)
=Py(u,v)-Plu,v)

=|Py(,v)- O )-1Pu.v)- O]
=(111213)D(P1P2P3)T‘ (lllzl.s)l(Plpzps)T
=(LhLLYD-D(pip2pa)T

2
- (l|lzl3)(D—D ])2

s

4.3. The control means of the deformation model

Solving the problem of deformation not only lics in
giving out deformation method itself, but what is morc
important is to bring forth some interactive control means
accompanying the method. Generally speaking, it is
hard for us to succeed only at one stroke, so we seldom
get the anticipated cffects through manipulating only
once. In any case, shapes generated by computer system
are rarely immediately acceptable and subsequent
modifications are necessary, so when creating a method
of deformation we bestow some degree of freedom on
it, 1.c., set up a number of parameters for shapce control,
Then we adjust these parameters so that the result of
deformation approximates or reaches the anticipated
eflects at Jast. Let’s review cxisting means of deformation
and shape maodification. Though they all have certain
degree of [recdom and can carry out interactive control,
they can control deformation only to some extent
quantitatively. Often we get these under the condition
of losing those so that some side effects arc yielded.
Thercupon, it is not casy to control the deformation
qualitatively. For example. in local deformation, using
the methods such as literatures {2-15, 19-21] it is not



26 International Journal of CAD/CAM  Vol. 1, No. 1, pp. 23~32

easy 10 keep the region beyvond the deformation remain
unaffected. And method in literature |27, 28, 29, 30, 21,
20, 19] dircct only to B-spline, NURBS surface. Even
tor these surface controlling its deformation region also
requires degree elevation or knot insertion, which greatly
increases the computational costs. Besides shape control
for deformation n literatuce |3| needs moving the control
points of paralielepiped lattice while traditional shape
modification needs changing the vertex position of
control polygon or its weight factors, but it is not clear
that which points or its weight factors are best ones to
be attered.

Our method can control the region over which
deformation takes place cxactly. In addition, with 1t we
can adjust the shape qualitatively. Tts control parameters
consist of /iy, £ (7 * j; i, j=1,2,3), n and bound curve
C. In addition, extension or contraction center ¢ and
vectors Iy, b, I also ¢an be used to control the deformation.
They all have obvious geometric meaning. Corve €
controls the deformation region, vectors Iy, L,  the
principal directions, #; the magnitude of deformation,
€;(i¥ j) certain symmetric effects. n the continuity of
deformed surlace on the bound curve and @' the center
of extension or contraciion.

In process of deformation, we control deformation
through the following means:

1) Change h;. Sec Figure 4-12

2) Change &;, which can create some symmetrical
effect,

3) Change #, which can alter the sooth degree of the
deformed surface over bound curve, For example,
increasing # can make the deformed surface press
close to the original surface near the bound curve.
See Figure 2, 3 and 9.

4) Change bound curve, which can alter the region
over that the defonmnation takes place. See Figure
3-4.

5) Change I, L, I;. See Figure 15-16.

6) Change the position vector . See Figure 10 and
Figure 14,

Remark 4.1: Theoretically we can choose any curve
like those described in the definition 1 as bound curve,
But in actual application if we do so the infinite
information of that kind of bound curve will make the
interactive manipulation difficult. We must change infinite
information into finite onc. For cxample if we adopt circle
as bound curve, we can easily control the deformation by
adjusting only three paramcters instead of whole curve.

4.4. The smooth degree of deformed surface on
bound curve
Lemma If 1,1, f; are unit vectors of linear
independence, (4 £, 1) is a matrix constructed by the
vectors {|, L. Iy in their column form and [ is a 3-order
unit matrixthen it follows that

Ll [2[%](1 l’a 1)((la)<la)(11><11)(ll Xlﬁ)) = (2)

proof See section 3.4

Theorem  Through the deformation (1), the deformed
surface possesses n-1-order wmmuny on buund curve,

proof  Write D(u, =D, { 3" DIad N 1=D8" 10
which p" or (p,)5” is similar, then {rom the properties
of extension function it follows that

Digle=Dle=LD )=
where 0<&,i<n— 1 ,m=k+1,m=1,2,A,n~-1 (3)

Looking on the [actors or the terms of (1) as matrix
function and taking the mixed partial derivative of it
with respect to u and v we get

d)(“.“- 2 ZCJCL[I l l (l IQIQ)DE;U]

im0 j=0
(Ex L)X }E)) P::)r:)_:;_},)) @

Evaluating the two sides of (4) on curve C and using
(3) and the lemma yields

(A+I|

(p ){k+l}
where 0<k,/<n-1 and 0Lk +i<n~1 . OED.

e

3.5. The continuous transition of deformation
over the intersection of two support regions
Let D; be operator matrix corresponding to support
regions U, enclosed by C;. #; corresponding index of 13,
where i=1,2.
If U, 1 U># @ then the equation of transition surface
for deformation over it is

pAwY)= [” ][l LdDD Dy (L x ) (%) Xlz))
2ty
pu,v)-0"+0'(w,v)e UIU,  (5)

The deformed surface possesses ay-1-order and n,-1-

~order continuity respectively on C; and C, segment of

C,YC>, where C,YC,; denoles {/,1{/,’s boundary. See
Figure 13, 22, 23.

In fact, taking the mixed partial derivative of (5) with
respect o # and v we obtain

(Pd)”‘”"ZZF’CA ] !' L L) (D D)
i=0=0 [ ‘
(XX XE) e

3

*ZZ 2 2 C ”C"C’Ck” n ](1 ol ) (D)0

{=0j=0p=04=0

(Dy)irir "]((lzx!3)(13xll)(llxlg))vﬁfff,%ffﬂgé |
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Morcover, from the properties of extension function
we gel

(D {0y

00T, Y M, —"(D)

st ‘(( YIC,

=0, 1<r=5+15,t5m,-1

Substituting it into {(6) yields

(pi}“”}
2

ko
ol | i+
cvene, = LR CCEEH I DO
1=0j=0 =
((sz‘z)(lzxﬁ)(ﬁXlz))TP{‘fff-,_f,f},l(clYc_.}lq

- {k+1) 3
=0 e veae, - OSkrLkI<n, -1

In a similar way we have

@i e veyie, =P Otrlblens-1

(Kk+0))
P e vee, »

Generally, let D; be operator matrix corresponding to
support regions U; enclosed by (.‘,-, n; corresponding
index of D,. where =12, ; m. If I U;# @ then the

=1

equation of transition surface for deformation over it is

I;d(lLV) (l Iﬁl'g)l_‘[D ((qulx)(’ x’ )(I|xlﬂ))

£, l»l 3)

ot

(p(u, v)—O')+0'.(u,v)E‘ll U,

which has a;~1-order continuity respectively on
n m
segment of Y C, . whcrc, i=1,2. :mand YI C, denotes
i=

r

the boundary of I {/;. Then a umform equation of

deformation can be- wrltten as

ne

pAuy) ===, Uz)]—[’)" (XB) XA X))

ITi zqm

(p(uv)-0)+0' (wr)e T Ul

where k=0 or 1. D=1. D!=D,, U’=Q-U,, U'=U,.
and obviously Y ? Utn=Q.

zk,xnu,"; i=1
Remark 4.2: If we want to adopt difterent principal
directions over different support regions, the deformation
should be carried out in turn. Here the deformation can
be formulated in a recurrence form according to certain
sequence.

4.6. The deformation of extension or contraction
along radial direction with O' as center

Pl v)=(p(uv)-OYE+O', (v)e Q
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Generally, with O; as centers £; as extension [unction
defined over the same or disjoint support regions the
deformation equation 1$

pAu,v)= i(h',-— Dip(u,v)-0)+plu,y), (uv)e L2

=1

4.7. The deformation of extension or contraction
along a vector ficld

Let pQu.vy=(x(u,v). ¥, v), z(u,v)) be a C surface

defined on the domain £2, where QC R Efu,v)

=FE(u,v,h;.n) extension functions whose the support

rcgions belong 1o €2, where n= r, i, j=1.2,3; and
S(u.v) a unit vectors ficld.

E -1 E—1 Ejp-1
Set D=| E, -1 Ep—l Ey-|
Eg-1 Ep-1 Ey-l

. then the deformed

surface pu.v) and the original onc p(u,v) have
following relation

P, v)=plit, )+ DS(u,v)(u,1)e 2

Similar to the section 4.1, now the control parameters
involve index n, curve C and A, In order to achieve
some special cffect such as symmetry, we can still
multiply the elements of the matrix D by *“~1" and
increase the control flexibility.

In following special situations, we take /| =Hn=ha,
h‘,'l'=()" i+ j.

1) When s(u.v) is a constant vector. the deformation
is extension or contraction along a fixed direction.

2) When 8(u.v) is a tangent vector field of a surface,
the deformation 1s extension or contraction along
a tangent line al every points.

3) When $(u.v) is a normal vector field of a surface,
the deformation is extension or contraction along
a normal line at cvery points.

4.8. Major thought of the deformation

Motivated by the mould principle of foundry and
manufacture industry. in this paper, we develop a new
deformation model bascd on so-called extension [unction.
The extension function and the operator matrix made
ol it correspond to mould. Adjusting every control
paramcter corresponds (o changing the shape of the
mould te achieve object expected. The operator matrix’s
acting on surface corresponds to cxtrusion or pouring.
Tts mathematical cssentiality is that within certain range
the coordinate spacce contracts or extends along certain
directions with a c¢ertain point as its center while the
magnitude of contraction and extension are variant
depending on extension functtons. If we adopt ditlerent
extension functions in different direction, we can oblain
rich deformation results. And coordinates beyond the
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rangc remain to be unchangeable. Compared with
existing methods, the thought is simple can easily be
understood by user without advanced mathematical
foundation.

5. Experimental Results

For the sake of simplicity, we only apply our method
to a biquadratic Bézier surface and a plane to demonstrate
it mainly in orthogonal coordinate system. We also
adapt circle, ellipse and so on as the bound curve of
deformation and let A;=0 (i j). Fig. 1 shows an
undeformed biquadratic Bézier surface with control points
(-4, -4, 2),(0, -5, 2.5), (4, -4, 2), (4, 0, 2.5), (0, 1, 4.9),
4, 0, 2.5), (4, 4, 2), (0, 5, 2), (4, 4, 2). Fig. 2 ts the

Fig. 1. The original surface.

E‘ig. 2. The index "23, h1|:hn=h33<0.

Fig. 3. The index n=4, h]]=h22=h33<0.

Fig. 4. The deformation with £33<0, k) =h;<0.

deformed surface by taking a circle as bound curve, the
point O =(0, 0, 2.2) as the center of contraction, 3 as
the index and A, =hyp=h<(). With 4 as the index and
other control parameters similar to Fig. 2, Fig. 3 shows
how the index influences the effect of the deformation.
Figs. 4-12 reveal how the change of Ay, hy; and A3
affects the effect of the deformation, with O'=(0, 0, 0)
as the center of contraction. Fig. 13 displays a deformation
with two intersecting support rcgions. Comparing with
Fig. 10, Fig. 14 has the same control parameters with
Fig. 10 but O'=(0, 0, 1.5). Figs. 15-16 display the
difference of deformation due to taking respectively f;
(V3B V3), L=(-14/3,-14/3,1//3), mean

Fig. 5. The deformation with f33>0, by =hx<0.

Fig. 6. The deformation with h”<0‘ Aoz, hx3>0.

Fig. 7. The deformation with Ay, h33>0, hyp<0.

Fig. 8. The deformation with £1:<0, ,1=f>0.
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Fig. 9. The center of bound circle is (3/4, 3/4) with radius 1/18. Fig. 14. The deformation with ('=(0, 0, 1.3).

Fig. 10. The deformation with O'=(0, 0, 0). Fig. 15. The deformation with L=(-1/4/3, -13. 17./3) i=
(1, 0. 0), b=(0, 1, 0).

Fig. 11. The deformation with h;,, fiz, b330, and hyy<<hn=hy,. Fig. 16. The deformation with &=(-1/./3 . -1///3. 11./3) 1=
(1,0,0), £=(0, 1. 0).

Fig, 12. The deformation with k., <0, h>0. Fig. 17. The deformation with hy>0, i =hn=0. and bound
curve 1-cos (m(u’ +v?)/4)=0.

Fig. 13. The centers of two bound circles are respectively (3/4, 1/ Fig. 18. The deformation with #::>0, h)1=h=0, and bound
1, (172, 3/4). curve 1+¢os {u-v))=0,

while keeping /,=(1,0,0) and L,=(0, 1,0). Fig. 17 shows bound curve as 1-cos (m(u’+v?)/4)=0. In actual ap-
that we can create a ring-like shape if we choose such plication, we can choose unclosed curve as bound curve.
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Fig. 19. The deformation with 73:>0, f,=h:=0, and bound
curve 1-cos (m{u’-v?)/2)=0.

Fig, 20, The deformation with f33>0, Ay =#3=0, bound curve 1-
cos (2mu+v)=0and a spceial support region,

Fig. 21. The deformation with £y:>0, A1=h»=0 and bound
curve 1-cos (3m{u-/3+v*/3)=(0.

Fig. 22. The deformation with bound curve 1+cos (T(u£v)/3)=0.

Fig. 23. The deformation with five intersecting support regions,
three positive A, and two negative Az, all 44y, Ay, being zero, and
all indexes heing, 3 and five circles respeclively being bound curves.

For example, Fig. 18 is the deformed plane through
using 1+cos ((u-v)=0 as bound curve and maltiplying

B3 by exp ((-u?-v?)/2)). Figs. 19-20 displays that we can
usc unclosed curve (I-cos (2m(u?+v))=0, I+cos (r(u*-
v*)/2)=0) as bound curve for some particular purpose.
Fig. 21 tells that we can simulate ripple if we wse the
curve 1-cos (3n(u’/3+v*5))=0 as bound curve and
multiply /33 by the factor exp (-u?-v"). Fig. 22 is achieved
by taking 1+cos ((u+v)/3)=0 as bound curve. Fig. 23
shows that our method can generates a complex shape
as “multi-peak surface” and omce again demonstrates
the continuous transition of the deformation over the
intersection of several support regions (the smooth degree
on every bounding curve can be adjusted by changing
its corresponding index).

Remark 5.1 In certan special case, self-intersection
may take place. For example. in the deformation
illustrated by Fig. S if we increase k), #i; too much the
deformed surface might intersects itself.

6. Comparison with Existing Methods

According to Barr’s way [1] the deformation of surface
is conducted mainly through following steps. First,
convert the surface into a vector field by differentiating
it. Then transform the vector field into another one
according to a certain transformation rule for tangent
vector. Finally intcgrate the new tangent vectors field to
obtam the new position vectors equation of deformed
swiface. Obviously, by the method the deformation
achieves figuration at one stroke. It is short of means
for interactive control and not easy to generate arbitrary
shape. The major reason for this lies in that we cant
foreknow the relation between the transformation matrix
and the shape of new surface. Moreover, in complex
case quadrature itself is not easy. However, our method
necd not first differentiate the surface and then integrate.
In addition, it has good controllability. As regards the
techniques {3, 4], there are two troubled things. First,
embed the object into lattices (convert the coordinates
of object into the ones relative to the lattices) after the
control points are determined according to the defor-
mation region of the object. Then adjust the position of
the control points concerned to deform the lattices such
that the deformation of the lattices is passed to the
inner object (t.e., compute the new global coordinates
of object points in the dcformed lattices corresponding
to the same ones relattve Lo the lattices). Thus an arbitrary
shape is created. However. in those methods calculation
concerned is completed with Bernstein or NURBS
polynomial. Though the computation can be carried out
through transforming the polynomial into the ones with
power basis. the amount of computation is still very large.
Morcover, in order (0 get an arbitrary shape, generally
a lot of control points must be chosen, which induces
new (rouble. For example, people always can not make
sure which control points should be moved. Even if
they know to move which ones, the last effect of
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deformation is difficult to predicate. Especially in actual
application overmany points result in screen clutter,
which is disadvantageous to manipulation. Compared
with FFD, RFFD |7] endows every control point with a
weight factor so as (o increase degree ol {rcedom for
deformation. The change of the effect of delormation
induced by adjusting the weight factors is ditficult 10
predicate too, which greatly lLimits the use of the
technique by the common user not knowing splince theory.
And the implementation of AXDf [11] must adopt a
curve as the axis on which a local frame field (axial
coordinate systems) is defined and convert their local
coordinates into the ones of axial coordinate system. Then
the shape ol the axis is changed with traditional curve-
editing techniques while the coordinates of object points
relative to axial coordinate sysiem keeps unchangeable.
Lastly, the global coordinates ol object points are
computed. However the effect of deformation made by
the method is dull. And it involves a large amount of
computation in conversion between two kinds of
coordinate. In contrast with above methods our one
docsn’t involve higher-degree polynomial and nced no
conversion between two kinds of coordinates in em-
bedding or aller deformation of auxiliary tool. So using
it there is no too large computing cost. Though it has
few control parameters, due to its very simple process of
use, rich effect of deformation can be got by continuous
implementations. Moreover it can quantitatively loresee
or control the effect of deformation. What is more
important is that the method need not draw support
from any auxiliary tool for deformation.

As for existing techniques modifying the shape of
surface, the onc given by hterature [27] is carried on by
following way: knot insertion, moving control points,
adjusting weight factors. Nevertheless, using it to modify
a certain shape and facing too many degree of freedom.
user always can not determine whether to move points
or to change weight lactors. Depending on geometric
terms such as point, displacement, literature [28) in-
troduced a perspective functional transformation of
arbitrary center O with which the shape of surface
modified is easy o cxpect. However it is still difticult
to control the region of modilication exactly or at will.
In addition, another one introduced by the litcrature
[28] can control pasition, 1-order or 2-order derivalive
through (he control points of B-sphine. However, for
more constraint conditions 1t often need recur to knot
insertion. When our method is used in shape maodification
of surface, its prominent advantage is that it possesses
universality. Tt is fit for not only BézicrB-SplineNURBS
[30] surfaces but also any ones except those expressed
by imphicit function unlike the methods in litcraturcs
[27, 28] that directs only to BézierB-SplineNURBS
surfaccs. Furthermore, our method still has the following
leatures:

1) It can control deformation region exactly and make
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sure the undeformed region remain unallected.

2} Used it in local delormation, the smooth degrec of
surface on bound curve can be chosen artificially.

3) Due to its simple mathematical background, user
without advanced mathematical knowledge can
operate i,

4) Tt combines shape modification and deformation.

S) Applicd over different regions conunuously or
simultancously it can create rich effect ol defor-
mation.

We think further research should aims at constructing
better extension function, locating the bound curve,
building a database of extension function and analyzing
the geometric information included in the deformed
surface of the original surface. As for the situation of
space curve, we discuss through other articles.
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