• 제목/요약/키워드: expressway tunnel section

Search Result 19, Processing Time 0.026 seconds

Fire resistance assessment of segment lining with PP fiber amount (PP섬유 혼입량에 따른 세그먼트 라이닝의 화재저항성 평가)

  • Choi, Soon-Wook;Kang, Tae-Ho;Lee, Chulho;Kim, Hae Song;Ahn, Byoungcheol;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.5
    • /
    • pp.303-314
    • /
    • 2021
  • With the high quality/high stiffness/high strength of segment lining, segment lining is increasingly used as the final lining of the tunnel. Precast concrete lining has higher quality and strength than field concrete. Paradoxically, this contributes to greater damage to concrete in the event of a fire in a tunnel. In this study, tests were conducted to determine the fire resistance performance of segment linings according to fiber content in fire resistance methods using synthetic fibers such as PP fibers. As a result, it was confirmed that fire resistance performance required by the relevant project can be secured when using 1.5 kg/m3 of PP fiber. In addition, comparison of the results of PP fibers with PET, a similar synthetic fiber, showed better fire resistance performance than when PP fibers were used.

Reducing the wind pressure at the leading edge of a noise barrier

  • Han, Seong-Wook;Kim, Ho-Kyung;Park, Jun-Yong;Ahn, Sang Sup
    • Wind and Structures
    • /
    • v.31 no.3
    • /
    • pp.185-196
    • /
    • 2020
  • A method to reduce the wind pressure at the leading edge of a noise barrier was investigated by gradually lowering the height of a member added to the end of the noise barrier. The shape of the lowered height of the added member was defined by its length and slope, and the optimal variable was determined in wind tunnel testing via the boundary-layer wind profile. The goal of the optimal shape was to reduce the wind pressure at the leading edge of the noise barrier to the level suggested in the Eurocode and to maintain the base-bending moment of the added member at the same level as the noise-barrier section. Using parametric wind tunnel investigation, an added member with a slope of 1:2 that protruded 1.2 times the height of the noise barrier was proposed. This added member is expected to simplify, or at least minimize, the types of column members required to equidistantly support both added members and noise barriers, which should thereby improve the safety and construction convenience of noise-barrier structures.

Behavior of braced wall due to distance between tunnel and wall in excavation of braced wall nearby tunnel (터널에 인접한 흙막이굴착 시 터널 이격거리에 따른 거동특성)

  • Ahn, Sung Joo;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.4
    • /
    • pp.657-669
    • /
    • 2018
  • In recent years, the development of complex urban areas has become saturated and much attention has been focused on the development of underground space, and deep excavation is frequently performed in order to increase the utilization of underground space due to the enlargement of buildings and the high rise of buildings. Therefore, in this study, we tried to understand the behavior of the braced wall and the behavior of the tunnel adjacent to the wall according to the stiffness of the wall and the distance between the tunnel and wall. As a result of the study, the deformation of the braced wall tended to decrease with increasing the stiffness of the wall, and the axial force acting on the struts was also different according to the stiffness of braced wall. When the stiffness of the braced wall is small (2 mm), the point at which the axial force of the braces maximizes is near 0.3H of the wall. When the stiffness of the braced wall is large (5 mm), the axial force is maximum at around 0.7H of the wall. Also, the tunnel convergence occurred more clearly when the separation distance from the braced wall was closer, the stiffness of the wall was smaller, and the tunnel convergence was concentrated to the lower right part. The ground settlement due to the excavation of the ground tended to decrease as the distance between tunnel and braced wall was closer to that of the tunnel, which is considered to be influenced by the stiffness of the tunnel.

Development of a programming logic to estimate the wall friction coefficient in vehicle tunnels with piston effects (교통환기력이 작용하는 터널 내 벽면마찰계수 추정을 위한 프로그램 로직 개발)

  • Kim, Hyo-Gyu;Choi, Pan-Gyu;Ryu, Ji-Oh;Lee, Young-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.39-53
    • /
    • 2018
  • Generally, the total ventilation resistance coefficient in a tunnel consists of inlet/outlet loss coefficient, wall friction coefficient, and other loss coefficient caused by sudden expansion and contraction of cross-section, etc. For the tunnel before opening, when the running ventilation fan is stopped, the wind speed in the tunnel is reduced by the total ventilation resistance drag. The velocity decay method is comparatively stable and easy to estimate the wall friction coefficient in the pre-opening tunnel. However, the existing study reported that when the converging wind speed is a negative value after the ventilation fan stops, it is difficult to estimate the wall friction coefficient according to the velocity decay method. On the other hand, for the operating tunnel in which the piston effect acts, a more complex process is performed; however, a reasonable wall friction coefficient can be estimated. This paper aims at suggesting a method to minimize the measurement variables of the piston effect and reviewing a method that can be applied to the operating tunnel. Also, in this study, a new method has been developed, which enables to calculate an variation of the piston effect if the piston effect is constant with a sudden change of external natural wind occurring while the wind speed in the tunnel decreases after the ventilation fan stops, and a programming logic has been also developed, which enables dynamic simulation analysis in order to estimate the wall friction coefficient in a tunnel.

A Case Study of Panoramic Section Image Collection Method for Measuring Density - with matched images in the Seoul Beltway Sapaesan Tunnel - (밀도측정을 위한 구간영상 최적 수집주기 결정 연구(서울 외곽순환도로 사패산 터널구간을 대상으로))

  • Park, Bumjin;Roh, Chang-Gyun;Kim, Jisoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.4
    • /
    • pp.20-29
    • /
    • 2014
  • Density is applied both three major macroscopic traffic variables (traffic volume, speed, and density) and two measures of effectiveness (MOE) for level of service (LOS) on highway (density and V/C). Especially, it is known for the most accurate MOE on evaluating the LOS of highway. Despite such importance, there is a lack of study on density relatively than other variables for its difficulty of measurement. Existing density estimation methods have some limitations such as density values of same traffic flow vary with collecting time. In this study, we researched actual density measuring method with panoramic image, after each CCTV images in the Sapaesan Tunnel on Seoul Ring Expressway are matched into one panoramic image. Analysis through the Central Limit Theorem shows that density of 24 1 km-images, which means 24 second, applies traffic situation well. That is to say that reasonable density value regardless of collecting time, and practical density which represents actual traffic flow can be taken in case of measuring density by suggested collecting cycle.

Development of VSL Control Algorithms for Various Traffic Conditions in Tunnels (교통상황별 터널부 VSL 표출제어 알고리즘 개발)

  • Lee, Soo-Yang;Lee, Sang-Soo;Lee, Choul-ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.3
    • /
    • pp.84-94
    • /
    • 2019
  • This paper developed the VSL control algorithms for various traffic conditions in tunnels. Various algorithms determining control speed, buffer speed, and display time were suggested in order to apply three gantry locations. The algorithms were evaluated by constructing simulation environments using python and VISSIM Com-Interface. Results show that speed difference between congested flow and normal flow was 50 km/h without algorithm application, but the difference was reduced to 20 km/h with algorithm application. In addition, the length of congested region in the exit section of the tunnel was also reduced from 800m to 300m with algorithm application. It is expected that the traffic accidents in tunnels may be reduced since the average and standard deviation of the speed are greatly reduced after applying the algorithms suggested.

A Study on the Influencing Factors for Incident Duration Time by Expressway Accident (고속도로 교통사고 시 돌발상황 지속시간 영향 요인 분석)

  • Lee, Ki-Young;Seo, Im-Ki;Park, Min-Soo;Chang, Myung-Soon
    • International Journal of Highway Engineering
    • /
    • v.14 no.1
    • /
    • pp.85-94
    • /
    • 2012
  • The term "incident duration time" is defined as the time from the occurrence of incident to the completion of the handling process. Reductions in incident durations minimize damages by traffic accidents. This study aims to develop models to identify factors that influence incident duration by investigating traffic accidents on highways. For this purpose, four models were established including an integrated model (Model 1) incorporating all accident data and detailed models (Model 2, 3 and 4) analyzing accidents by location such as basic section, bridges and tunnels. The result suggested that the location of incident influences incident duration and the time of arrival of accident treatment vehicles is the most sensitive factor. Also, significant implications were identified with regard to vehicle to vehicle accidents and accidents by trucks, in night or in weekends. It is expected that the result of this study can be used as important information to develop future policies to manage traffic accidents.

Quantitative assessment of depth and extent of notch brittle failure in deep tunneling using inferential statistical analysis

  • Lee, Kang-Hyun;Lee, In-Mo;Shin, Young-Jin
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.201-206
    • /
    • 2020
  • A stress-induced brittle failure in deep tunneling generates spalling and slabbing, eventually causing a v-shaped notch formation. An empirical relationship for the depth of the notch to the maximum tangential stress assuming an equivalent circular cross-section was proposed (Martin et al. 1999). While this empirical approach has been well recognized in the industry and used as a design guideline in many projects, its applicability to a non-circular opening is worth revisiting due to the use of equivalent circular profile. Moreover, even though the extent of the notch also contributes to notch failure, it has not been estimated to date. When the estimate of both the depth and the extent of notch are combined, a practical and economically justifiable support design can be achieved. In this study, a new methodology to assess the depth as well as the extent of notch failure is developed. Field data and numerical simulations using the Cohesion Weakening Frictional Strengthening (CWFS) model were collected and correlated with the three most commonly accepted failure criteria (σ13, Dismaxc, σdevcm). For the numerical analyses, the D-shaped tunnel was used since most civil tunnels are built to this profile. Inferential statistical analysis is applied to predict the failure range with a 95% confidence level. Considering its accuracy and simplicity, the new correlation can be used as an enhanced version of failure assessment.

Mechanism of steel pipe reinforcement grouting based on tunnel field measurement results (터널 현장 계측결과를 통한 강관보강 그라우팅의 거동 메커니즘)

  • Shin, Hyunkang;Jung, Hyuksang;Lee, Yong-joo;Kim, Nag-young;Ko, Sungil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.3
    • /
    • pp.133-149
    • /
    • 2021
  • This study aims to report the behavioral mechanism of steel pipe reinforcement grouting, which is being actively used to ensure the stability of the excavation surface during tunnel excavation, based on measurements taken at the actual site. After using a 12 m steel pipe attached with a shape displacement meter and a strain gauge to reinforce the actual tunnel surface, behavioral characteristics were identified by analyzing the measured deformation and stress of the steel pipe. Taking into account that the steel pipes were overlapped every 6 m, the measured data up to 7 m of excavation were used. In addition, the behavioral characteristics of the steel pipe reinforcement according to the difference in strength were also examined by applying steel pipes with different allowable stresses (SGT275 and SGT550). As a result of analyzing the behavior of steel pipes for 7 hours after the first excavation for 1 m and before proceeding with the next excavation, the stress redistribution due to the arching effect caused by the excavation relaxation load was observed. As excavation proceeded by 1 m, the excavated section exhibited the greatest deformation during excavation of 4 to 6 m due to the stress distribution of the three-dimensional relaxation load, and deformation and stress were generated in the steel pipe installed in the ground ahead of the tunnel face. As a result of comparing the behavior of SGT275 steel pipe (yield strength 275 MPa) and SGT550 steel pipe (yield strength 550 MPa), the difference in the amount of deformation was up to 18 times and the stress was up to 12 times; the stronger the steel pipe, the better it was at responding to the relaxation load. In this study, the behavior mechanism of steel pipe reinforcement grouting in response to the arching effect due to the relaxation load was identified based on the measured data during the actual tunnel excavation, and the results were reported.