• 제목/요약/키워드: expression of pro-inflammatory genes

검색결과 123건 처리시간 0.032초

LPS로 유도된 RAW264.7 세포주 염증모델에서 소리쟁이의 법제처리에 따른 항염증 효과 (Anti-Inflammatory Effects of Beopje Processed Curly Dock (Rumex crispus L.) in LPS-Induced Murine RAW 264.7 Cell Lines)

  • 김승희;강순아
    • 한국식품영양학회지
    • /
    • 제32권5호
    • /
    • pp.408-416
    • /
    • 2019
  • This study investigated the anti-inflammatory effects of processed (Beopje) curly dock (Rumex crispus L.) in LPS (lipopolysaccharide)-stimulated murine RAW 264.7 cells. The experimental group was classified into five groups : LPS no treatment, CD (curly dock), CD-B (CD processed through Beopje), LPS, LPS+CD-B (LPS+CD processed through Beopje) and LPS+CD (LPS+CD). Treatment of the Raw 264.7 cell lines using LPS led to a significant increase in NO production, pro-inflammatory cytokines ($TNF-{\alpha}$, IL-6 and $IL-1{\beta}$), and inflammation related genes (COX-2 and iNOS). Investigation of the inhibitory effects of CD and processed CD on NO production and expression of iNOS and COX-2 was done in LPS-induced RAW 264.7 cells. There was significant inhibition of NO production by LPS+CD and LPS+CD-B in a dose-dependent manner (p<0.05). Particularly, LPS+CD-B exhibited reduced mRNA expression of iNOS and COX-2 and NO production as compared to LPS+CD in Raw 264.7 cell lines (p<0.05). These results may explain some known biological activities of curly dock including the anti-inflammatory effects. CD-B in particular exhibited the highest anti-inflammatory effects of inhibiting production of NO, through the regulation of inflammatory related genes and pro-inflammatory cytokines. These results of Beopje processing might help decrease the anti-biological effects and increase several active substances of curly dock.

마우스 대식세포 RAW264.7 세포에서 MAPK와 NF-κB 경로를 통한 quercetin의 염증 반응 저해 활성 (Quercetin Inhibits Inflammation Responses via MAPKs and NF-κB Signaling Pathways in LPS-stimulated RAW264.7 Cells)

  • 원우영;김정태;김근호;황지영;정정욱;김종식
    • 생명과학회지
    • /
    • 제32권11호
    • /
    • pp.899-907
    • /
    • 2022
  • Quercetin은 과일과 채소에 풍부한 플라보노이드 중의 하나로써, 항산화, 항염증, 항암, 항바이러스 활성 등 다양한 약리학적 활성을 가지고 있는 것으로 알려져 있다. 본 연구에서는 in vitro 모델에서 quercetin의 항염증 활성과 작용기전을 연구하였다. Quercetin은 LPS로 자극된 RAW264.7에서 세포 생존율에 영향 없이 NO 생산을 농도 의존적으로 저해하였고, iNOS와 COX-2 단백질의 발현을 억제하였다. 게다가, quercetin은 LPS로 유도된 p38, JNK, ERK의 인산화를 농도 의존적으로 저해하였고, NF-κB p65 단백질과 억제자인 IκBα 단백질의 인산화를 저해하였다. 이러한 결과는 quercetin의 항염증 활성이 MAPK 경로와 NF-κB를 조절함으로써 이루어진다는 것을 시사한다. Quercetin에 의해 4종류의 친 염증성 cytokine (CSF2, IL-1β, IL-6, TNF-α)의 발현 변화를 정량적 real-time PCR 방법으로 확인한 결과, 모든 cytokine 유전자의 발현이 감소됨을 확인하였다. 종합적으로, 본 연구결과는 플라보노이드 quercetin이 RAW264.7 세포에서 LPS로 유도된 염증반응을 MAPK 경로와 NF-κB경로를 통해 억제하고 친염증성 cytokine 유전자의 발현을 억제함으 로써 조절한다는 것을 제시한다.

LPS 유도 RAW264.7세포에서 발효 옻 추출물을 함유한 장류의 항염증 효과 (The anti-inflammatory influence of fermented soy products containing a fermented Rhus verniciflua extract on lipopolysaccharide (LPS)-treated RAW 264.7 cells)

  • 임현지;김현영;이정미;김현주
    • 한국식품과학회지
    • /
    • 제50권6호
    • /
    • pp.642-652
    • /
    • 2018
  • 본 연구는 LPS 처리 큰포식 세포에서 옻 추출물, 옻 첨가 된장 및 간장 추출물의 항염증 및 산화방지 효과를 확인하였다. 염증 반응은 자극이 가해지면 히스타민, 세로토닌, 프로스타글란딘과 같은 혈관 활성물질에 의해 혈관 투과성이 증대되어 염증을 유발하고 사이토카인, 활성산소종, lysosomal enzyme 등 다양한 매개 인자가 관여한다. 자극에 의한 큰포식세포의 염증반응은 $TNF-{\alpha}$, IL-6, $IL-1{\beta}$와 같은 pro-inflammatory cytokine의 발현이 유도되고, iNOS와 COX-2에 영향을 받는 유전자의 발현을 자극하게 되어 NO 및 $PGE_2$ 등의 염증 인자가 생성된다. 이에 따라 옻 추출물, 옻 첨가 된장 및 간장 추추물의 염증 및 산화방지시스템 관련 유전자 발현을 분석하였다. 그 결과 옻 추출물은 LPS 자극에 의해 생성된 NO, 염증성 사이토카인 및 $PGE_2$의 생성을 유의적으로 감소시켰다. 옻 추출물은 산화방지관련 핵 내 전사인자인 Nrf2 및 관련 유전자의 발현에 영향을 미치지 않았다. 옻첨가 된장 및 간장 추출물은 NO 및 염증성 사이토카인의 생성을 억제하였지만, 염증 및 산화방지관련 유전자의 발현에 영향을 미치지는 않았다.

Kyungheechunggan-tang suppresses inflammatory cytokines and fibrotic genes in LPS-induced RAW 264.7 cells and LX-2 cells

  • Bae, Junghan;Jang, Eungyeong;Lee, Jang-Hoon
    • 대한한의학회지
    • /
    • 제39권4호
    • /
    • pp.40-50
    • /
    • 2018
  • Objectives: The aim of this study is to investigate anti-inflammatory effects of Kyungheechunggan-tang (KHCGT) on LPS- induced RAW 264.7 cells and LX-2 cells and anti-fibrotic effects of KHCGT on LX-2 cells. Materials and Methods: Three types of KHCGTs (KHCGT-A, -B, and -C) by narrowing down the number of constituent herbs from 9 (KHCGT-A) to 5 (KHCGT-B) and to 3 (KHCGT-C) were developed. To understand pharmacological effects of KHCGT, three types of KHCGTs were treated on RAW 264.7 cells and LX-2 cells. Anti-inflammatory activities of KHCGT were evaluated by ELISA assay for pro-inflammatory cytokines, IL-6, $TNF-{\alpha}$ and IL-10, in LPS-stimulated RAW 264.7 cells and for IL-6 production in LPS-induced LX-2 cells. In addition, anti-fibrotic effects of KHCGT were determined by quantitative real-time PCR assay for fibrosis-related genes, ${\alpha}-SMA$, collagen1A1, TIMP1, MMP-2, in LX-2 cells. Results: KHCGT-A and KHCGT-C showed inhibitory effects on secretion of IL-6 in LPS-stimulated RAW 264.7 cells and LX-2 cells. KHCGT-B and KHCGT-C exhibited inhibitory effects on the expression of pro-inflammatory cytokines such as IL-6, $TNF-{\alpha}$, and IL-10 in LPS-stimulated RAW 264.7 cells. The mRNA expression levels of collagen1A1 and MMP-2 were significantly reduced by KHCGT-C whereas TIMP-1 was suppressed by KHCGT-A and KHCGT-B in LX-2 cells. Among three different formulas, KHCGT-C demonstrated the most remarkable effects on inflammation and fibrosis. Conclusions: In this study, KHCGT showed both anti-inflammatory and anti-fibrotic effects which make it to be a prospective agent for chronic liver diseases with inflammation and fibrosis.

Suppression of Lipopolysaccharide-Induced Inflammatory and Oxidative Response by 5-Aminolevulinic Acid in RAW 264.7 Macrophages and Zebrafish Larvae

  • Ji, Seon Yeong;Cha, Hee-Jae;Molagoda, Ilandarage Menu Neelaka;Kim, Min Yeong;Kim, So Young;Hwangbo, Hyun;Lee, Hyesook;Kim, Gi-Young;Kim, Do-Hyung;Hyun, Jin Won;Kim, Heui-Soo;Kim, Suhkmann;Jin, Cheng-Yun;Choi, Yung Hyun
    • Biomolecules & Therapeutics
    • /
    • 제29권6호
    • /
    • pp.685-696
    • /
    • 2021
  • In this study, we investigated the inhibitory effect of 5-aminolevulinic acid (ALA), a heme precursor, on inflammatory and oxidative stress activated by lipopolysaccharide (LPS) in RAW 264.7 macrophages by estimating nitric oxide (NO), prostaglandin E2 (PGE2), cytokines, and reactive oxygen species (ROS). We also evaluated the molecular mechanisms through analysis of the expression of their regulatory genes, and further evaluated the anti-inflammatory and antioxidant efficacy of ALA against LPS in the zebrafish model. Our results indicated that ALA treatment significantly attenuated the LPS-induced release of pro-inflammatory mediators including NO and PGE2, which was associated with decreased inducible NO synthase and cyclooxygenase-2 expression. ALA also inhibited the LPS-induced expression of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, reducing their extracellular secretion. Additionally, ALA abolished ROS generation, improved the mitochondrial mass, and enhanced the expression of heme oxygenase-1 (HO-1) and the activation of nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) in LPS-stimulated RAW 264.7 macrophages. However, zinc protoporphyrin, a specific inhibitor of HO-1, reversed the ALA-mediated inhibition of pro-inflammatory cytokines production and activation of mitochondrial function in LPS-treated RAW 264.7 macrophages. Furthermore, ALA significantly abolished the expression of LPS-induced pro-inflammatory mediators and cytokines, and showed strong protective effects against NO and ROS production in zebrafish larvae. In conclusion, our findings suggest that ALA exerts LPS-induced anti-inflammatory and antioxidant effects by upregulating the Nrf2/HO-1 signaling pathway, and that ALA can be a potential functional agent to prevent inflammatory and oxidative damage.

Single and Dual Ligand Effects on Gene Expression Changes in Mouse Macrophage Cells

  • Choi Sang-Dun;Seo Jeong-Sun
    • Genomics & Informatics
    • /
    • 제4권2호
    • /
    • pp.57-64
    • /
    • 2006
  • We identified differentially expressed genes in RAW264.7 cells in response to single and double ligand treatments (LPS, $IFN{\gamma}$, 2MA, LPS plus $IFN{\gamma}$, and LPS plus 2MA). The majority of the regulated transcripts responded additively to dual ligand treatment. However, a significant fraction responded in a non-additive fashion. Several cytokines showing non-additive transcriptional responses to dual ligand treatment also showed non-additive protein production/secretion responses in separately performed experiments. Many of the genes with non-additive responses to LPS plus 2MA showed enhanced responses and encoded pro-inflammatory proteins. LPS plus $IFN{\gamma}$ appeared to induce both non-additive enhancement and non-additive attenuation of gene expression. The affected genes were associated with a variety of biological functions. These experiments reveal both dependent and independent regulatory pathways and point out the specific nature of the regulatory interactions.

Effects of troxerutin on vascular inflammatory mediators and expression of microRNA-146a/NF-κB signaling pathway in aorta of healthy and diabetic rats

  • Che, Xing;Dai, Xiang;Li, Caiying
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권5호
    • /
    • pp.395-402
    • /
    • 2020
  • This study has investigated the effect of a potent bioflavonoid, troxerutin, on diabetes-induced changes in pro-inflammatory mediators and expression of microRNA-146a and nuclear factor-kappa-B (NF-κB) signaling pathway in aortic tissue of type-I diabetic rats. Male Wistar rats were randomly divided into four groups (n = 6/each): healthy, healthy-troxerutin, diabetic, and diabetic-troxerutin. Diabetes was induced by streptozotocin injection (60 mg/kg; intraperitoneally) and lasted 10 weeks. Troxerutin (150 mg/kg/day) was administered orally for last month of experiment. Inflammatory cytokines IL-1β, IL-6, and TNF-α, as well as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule (VCAM), cyclooxygenase-II (COX-II), and inducible-nitric oxide synthase (iNOS) were measured on aortic samples by enzyme-linked immunosorbent assay. Gene expressions for transcription factor NF-κB, interleukin-1 receptor-associated kinase-1 (IRAK-1), TNF receptor-associated factor-6 (TRAF-6), and microRNA-146a were determined using real-time polymerase chain reaction. Ten-week diabetes significantly increased mRNA levels of IRAK-1, TRAF-6, NF-κB, and protein levels of cytokines IL-1β, IL-6, TNF-α, adhesion molecules ICAM-1, VCAM, and iNOS, COX-II, and decreased expression of microRNA-146a as compared with healthy rats (p < 0.05 to p < 0.01). However, one month treatment of diabetic rats with troxerutin restored glucose and insulin levels, significantly decreased expression of inflammatory genes and pro-inflammatory mediators and increased microRNA level in comparison to diabetic group (p < 0.05 to p < 0.01). In healthy rats, troxerutin had significant reducing effect only on NF-κB, TNF-α and COX-II levels (p < 0.05). Beside slight improvement of hyperglycemia, troxerutin prevented the activation of NF-κB-dependent inflammatory signaling in the aorta of diabetic rats, and this response may be regulated by microRNA-146a.

GPx7 ameliorates non-alcoholic steatohepatitis by regulating oxidative stress

  • Kim, Hyeon Ju;Lee, Yoseob;Fang, Sungsoon;Kim, Won;Kim, Hyo Jung;Kim, Jae-woo
    • BMB Reports
    • /
    • 제53권6호
    • /
    • pp.317-322
    • /
    • 2020
  • Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases. NAFLD can further progress to irreversible liver failure such as non-alcoholic steatohepatitis (NASH) fibrosis and cirrhosis. However, specific regulator of NASH-fibrosis has yet to be established. Here, we found that glutathione peroxidase 7 (GPx7) was markedly expressed in NASH fibrosis. Although GPx7 is an antioxidant enzyme protecting other organs, whether GPx7 plays a role in NASH fibrosis has yet to be studied. We found that knockdown of GPx7 in transforming growth factor-β (TGF-β) and free fatty acids (FFA)-treated LX-2 cells elevated the expression of pro-fibrotic and pro-inflammatory genes and collagen synthesis. Consistently, GPx7 overexpression in LX-2 cells led to the suppression of ROS production and reduced the expression of pro-fibrotic and pro-inflammatory genes. Further, NASH fibrosis induced by choline-deficient amino acid defined, high fat diet (CDAHFD) feeding was significantly accelerated by knockdown of GPx7, as evidenced by up-regulated liver fibrosis and inflammation compared with CDAHFD control mice. Collectively, these results suggest that GPx7 might be a novel therapeutic target to prevent the progression and development of NAFLD.

THP-1 세포주에서 Leptin에 의한 케모카인 유전자 발현 (Effect of Leptin on the Expression of Chemokine Genes in THP-1 Cells)

  • 최진희;박호선;이태윤;김성광;김희선
    • Journal of Yeungnam Medical Science
    • /
    • 제20권2호
    • /
    • pp.129-141
    • /
    • 2003
  • Background: Leptin is a 16-KDa non-glycosylated peptide hormone synthesized almost exclusively by adipocytes. The well-known function of leptin is regulation of food intake and energy expenditure. Leptin also plays a regulatory role in immune and inflammatory process including cytokine production. The purpose of this study was to investigate the effect of leptin on the expression of several chemokine genes(RANTES, IL-8, MCP-1, IP-10, Mig, MIP-$1{\alpha}$, MIP-$1{\beta}$, and GRO-${\alpha}$) in THP-1 cells. Materials and Methods: Total RNA of THP-1 cells were prepared by Trizol method, and then stimulated with the leptin(250 ng/$m{\ell}$) or LPS(100 ng/$m{\ell}$). We examined the expression patterns of various chemokine mRNAs in THP-1 cell lines by RT-PCR and Northern blot. Results: Leptin did not induce the expression of chemokine mRNAs in THP-1 cells. The expression patterns of RANTES, IL-8, MCP-1, IP-10, and Mig mRNAs in THP-1 cells stimulated with leptin and LPS simultaneously was almost same to the patterns of LPS alone-induced chemokine mRNAs. RANTES mRNA expression was independent on the concentrations of leptin. Although leptin did not have strong effect on the expression of RANTES, IL-8, MCP-1, IP-10, Mig, MIP-$1{\alpha}$, MIP-$1{\beta}$, and GRO-${\alpha}$ mRNAs in THP-1 cells, leptin could induce the expression of long isoform of leptin receptor(OB-RL) mRNA, and its expression was elevated in simultaneous stimulation of leptin and LPS. Conclusion: These data suggest that leptin is able to induce OB-RL in THP-1 cells, however, leptin has little effect on the expression of pro-inflammatory chemokine genes.

  • PDF

Vaccinium oldhamii Stems Inhibit Pro-inflammatory Response and Osteoclastogenesis through Inhibition of NF-κB and MAPK/ATF2 Signaling Activation in LPS-stimulated RAW264.7 Cells

  • Park, Su Bin;Kim, Ha Na;Kim, Jeong Dong;Jeong, Jin Boo
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 추계학술대회
    • /
    • pp.67-67
    • /
    • 2019
  • Vaccinium oldhamii (V. oldhamii) has been reported to exert a variety of the pharmacological properties such as anti-oxidant activity, anti-cancer activity, and inhibitory activity of ${\alpha}$-amylase and acetylcholinesterase. However, the anti-inflammatory activity of V. oldhamii has not been studied. In this study, we aimed to investigate anti-inflammatory activity of the stem extracts from V. oldhamii, and to elucidate the potential mechanisms in LPS-stimulated RAW264.7 cells. Among VOS, VOL and VOF, the inhibitory effect of NO and PGE2 production induced by LPS was highest in VOS treatment. Thus, VOS was selected for the further study. VOS dose-dependently blocked LPS-induced NO and PGE2 production by inhibiting iNOS and COX-2 expression, respectively. VOS inhibited the expression of pro-inflammatory cytokines such as $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$. In addition, VOS suppressed TRAP activity and attenuated the expression of the osteoclast-specific genes such as NFATc1, c-FOS, TRAP, MMP-9, cathepsin K, CA2, OSCAR and ATPv06d2. VOS inhibited LPS-induced $NF-{\kappa}B$ signaling activation through blocking $I{\kappa}B-{\alpha}$ degradation and p65 nuclear accumulation. VOS inhibited MAPK signaling activation by attenuating the phosphorylation of ERK1/2, p38 and JNK. Furthermore, VOS inhibited ATF2 phosphorylation and blocked ATF2 nuclear accumulation. From these findings, VOS has potential to be a candidate for the development of chemopreventive or therapeutic agents for the inflammatory diseases.

  • PDF