• Title/Summary/Keyword: expression of body

Search Result 1,998, Processing Time 0.029 seconds

Manipulation of Tissue Energy Metabolism in Meat-Producing Ruminants - Review -

  • Hocquette, J.F.;Ortigues-Marty, Isabelle;Vermorel, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.5
    • /
    • pp.720-732
    • /
    • 2001
  • Skeletal muscle is of major economic importance since it is finally converted to meat for consumers. The increase in meat production with low costs of production may be achieved by optimizing muscle growth, whereas a high meat quality requires, among other factors, the optimization of intramuscular glycogen and fat stores. Thus, research in energy metabolism aims at controling muscle metabolism, but also liver and adipose tissue metabolism in order to optimize energy partitioning in favour of muscles. Liver is characterized by high anabolic and catabolic rates. Metabolic enzymes are regulated by nutrients through short-term regulation of their activities and long-term regulation of expression of their genes. Consequences of liver metabolic regulation on energy supply to muscles may affect protein deposition (and hence growth) as well as intramuscular energy stores. Adipose tissues are important body reserves of triglycerides, which result from the balance between lipogenesis and lipolysis. Both processes depend on the feeding level and on the nature of nutrients, which indirectly affect energy delivery to muscles. In muscles, the regulation of rate-limiting nutrient transporters, of metabolic enzyme activities and of ATP production, as well as the interactions between nutrients affect free energy availability for muscle growth and modify muscle metabolic characteristics which determine meat quality. The growth of tissues and organs, the number and the characteristics of muscle fibers depend, for a great part, on early events during the fetal life. They include variations in quantitative and qualitative nutrient supply to the fetus, and hence in maternal nutrition. During the postnatal life, muscle growth and characteristics are affected by the age and the genetic type of the animals, the feeding level and the diet composition. The latter determines the nature of available nutrients and the rate of nutrient delivery to tissues, thereby regulating metabolism. Physical activity at pasture also favours the orientation of muscle metabolism, towards the oxidative type. Consequently, breeding systems may be of a great importance during the postnatal life. Research is now directed towards the determination of individual tissue and organ energy requirements, a better knowledge of nutrient partitioning between and within organs and tissues. The discovery of new molecules (e. g. leptin), of new molecular mechanisms and of more powerful techniques (DNA chips) will help to achieve these objectives. The integration of the different levels of knowledge will finally allow scientists to formulate new types of diets adapted to sustain a production of high quality meat with lower costs of production.

Inhibition of Gap Junctional Intercellular Communication by Food Preservatives Potassium Sorbate (소르빈산 칼륨의 GJIC 억제로 인한 간독성 유발)

  • Hwang, Jae-Woong;Chung, Ji-Hye;Jung, Ji-Won;Jung, Ji-Youn;Kim, Sun-Jung;Park, Jung-Ran;Ahn, Ji-Yun;Ha, Tae-Youl;Kim, Sung-Ran;Lee, Yong-Soon;Kang, Kyung-Sun
    • Journal of Food Hygiene and Safety
    • /
    • v.21 no.4
    • /
    • pp.269-273
    • /
    • 2006
  • Potassium Sorbate (PS) is a potassium salt version of sorbic acid, which has antimicrobial and fungistatic features in foods. Therefore, PS is used as a food preservative against fungi and mold. PS has been found to be non-toxic even when taken in large quantities given its trait to be broken down in the body into water and carbon dioxide. Gap Junctional Intercellular Communication (GJIC) is essential in the maintenance of tissue homeostasis during development and differentiation. This study was made of the effects of PS on GJIC in WB-F344 rat liver epithelial (WB) cells. We found dramatic decrease of cell viability in time- and dose-dependent manners when WB cells were treated with PS. The effect of PS on GJIC is strong inhibition, and it took place in parallel with a hyperphosphorylation of connexin 43 expression. The finding that PS interferes with gap junction functionality should be considered with respect to the mechanism of PS-induced hepatotoxicity.

The Influence of State on the Structure of PSB and Broadcasting Regulatory Body Survey on Political Independence of Broadcasting (방송의 정치적 독립성 확보를 위한 미디어 정책 방향 연구)

  • Choi, Young-Mook;Park, Seung-Dae
    • Korean journal of communication and information
    • /
    • v.46
    • /
    • pp.590-626
    • /
    • 2009
  • The limitation and scarcity of broadcasting waves provide important rationale behind the idea of public ownership of broadcasting waves which can facilitate communications among people with diverse backgrounds and values in the society. Independence of broadcasting industry from the regulatory organization is imperative for the broadcasting industry to serve the public interest that has been historically defined by each county. For the Korean broadcasting industry, history of modern Korea taught us that the broadcasting regulatory organizations such as Korea Communications Commission(KCC) should be kept from any political influence for the industry to best serve the public. Recent controversies on the role of the CEO of KBS and the appointment of the CEO of YTN by the president of the country provide evidence that the independence of broadcasting in Korean society is a critical topic. This study examined the corporate structures of broadcasting industry and the political independence of the industry in relation to the changes in the concept of public interest and the role of broadcasting. It is critically important to investigate the political independence of broadcasting in Korea because the core argument of independence of broadcasting which is about the freedom of expression protected by the constitution is still contested in the country. For the purpose of collecting diverse perspectives on broadcasting, survey method was adopted in this study. Three groups Abstracts 697 of participants were recruited: reporters, experts in the field, and regular citizens. The result indicated that the independence of broadcasting was in the process of deterioration. Also, the participants of the study understood that it was impossible for the broadcasting to serve the public interest when the broadcasting was not free from the influence of regulatory institutions such as KCC.

  • PDF

Non-alcoholic fatty liver protective effects, and studies on the mechanism of action of Crataegi Fructus (산사의 NAFLD 보호 효과 및 그 작용기전에 관한 연구)

  • Kim, Min-Chul;Kong, Ryong;Han, Hyoung-Sun;Kang, Dam-hee;Lee, Seung-Jin;Lee, Cheon-Cheon;Wang, Seo;Kwon, Dong-Yeul;Kang, Ok-Hwa
    • The Korea Journal of Herbology
    • /
    • v.33 no.6
    • /
    • pp.61-70
    • /
    • 2018
  • Objectives : Non-alcoholic fatty liver disease (NAFLD) is characterized by the accumulation of hepatic triglycerides (TG) that leads to inflammation and fibrosis. Crataegi Fructus ethanol extract (CE) is a korean traditional herb that used for digestive diseases. It has been investigated that CE has the effect that prevent hepatotoxicity caused by CCl4 or GaIN and regulate the inflammatory in several organs. However, a hypolipidemic effect of CF has not been reported. Methods : The purpose of this study is that examine the lipid accumulation inhibitory effect of CE on NAFLD. We checked the body and liver weight change of MCD-diet induced mice with/without administration of CE. The blood lipid levels of C57BL/6J mice were checked by biochemistry. Also we observed the liver histology of MCD-diet induced mice and investigate the molecular mechanisms in MCD-diet-induced NAFLD in C57BL/6J mice. Results : CE improved MCD-diet-induced lipid accumulation and TG and TC levels. Also, CE decreased hepatic lipogenesis such as SREBP-1, $C/EBP{\alpha}$, $PPAR{\gamma}$, ACC and FAS. Besides, we also found out that CE increased AMPK phosphorylation. These results indicated that CE has the same ability to activate AMPK and then reduce SREBP-1, and FAS expression, finally leading to inhibit hepatic lipogenesis and hepatic antioxidative ability. Conclusions : In this report, we found CE exerted a regulatory effect on lipid accumulation by decreasing lipogenesis in MCD-diet induced NAFLD model. Therefore, CE extract may be active in the prevention of fatty liver.

Effects of Sujeom Powder Pharmacopuncture Injected at Jung-wan($CV_{12}$) on the Caerulein-induced Acute Pancreatitis in the Rat (중완(中脘)($CV_{12}$) 수념산(手拈散)약침이 Caerulein으로 유발된 흰쥐의 췌장염에 미치는 영향)

  • Kim, In Soo;Jeon, Sang Yun;Jeong, Tae San;Kang, Sung Sun;Jo, Jae Jun;Lee, Young Su
    • Journal of Acupuncture Research
    • /
    • v.29 no.6
    • /
    • pp.35-45
    • /
    • 2012
  • Objectives : This study was designed to investigate Effects of Sujeom powder(SJP) pharmacopuncture Injected at Jung-wan($CV_{12}$) in rats with caerulein-induced acute pancreatitis(AP). Methods : We examined changes of organ weight, histology, immunohistochemistry and gene expression of cycolooxygenase 2(COX-2) in the pancreas. Twenty adult male Sprague-Dawley rats were divided into four groups as follow: normal(Nor), caerulein-induced(Con), caerulein+SJP pharmacopuncture 0.2mL injected at Jung-wan($CV_{12}$)(SA), and caerulein+SJP pharmacopuncture 0.8 mL injected at Jung-wan($CV_{12}$)(SB) groups. Pancreatic tissues of rats from all groups were removed for histological observation and light microscopic examination. Interleukin-6(IL-6) levels were determined spectrophotometrically. Results : The ratio of pancreas/body weights was significantly(p<0.05) increased in the Con, the SA and the SB compared with the Nor, but was slightly decreased in the SA and in the SB groups compared with the Con. Caerulein administration has significantly(p<0.05) increased in the levels of amylase, but the SA, the SB significantly(p<0.05) decreased in the levels of these enzyme. The levels of amylase were increased significantly with caerulein administration, but were inhibited significantly in the SA and in the SB groups. Interleukin-6(IL-6) levels were significantly(p<005) increased in all groups compared with the Nor, especially in the SB. were significantly increased. The levels of Tumor necrosis factor(TNF)-${\alpha}$ levels were significantly increased in all groups compared with the Nor. In the conclusion, the datum of IL-6 and TNF-${\alpha}$ are suggested that the inflamation was still existed actively at a point of measurement(24 hours later). The COX-2 positive materials are observed in the pancreas from the Con, but these positive materials are decreased in the SJP pharmacopuncture at Jung-wan($CV_{12}$) treatment group. Conclusion : SJP pharmacopuncture injected at Jung-wan($CV_{12}$) is potentially capable of limiting pancreatic damage during AP by restoring the fine structure of acinar cells and tissues. Therefore we can say that SJP pharmacopuncture Injected at Jung-wan($CV_{12}$) may have beneficial effects in the treatment of caerulein-induded AP. Further studies about the adequate amount of the SJP pharmacopuncture and about more effective route of administration is still required.

Inhalation Toxicity of Particulate Matters Doped with Arsenic Induced Genotoxicity and Altered Akt Signaling Pathway in Lungs of Mice

  • Park, Jin-Hong;Kwon, Jung-Taek;Minai-Teherani, Arassh;Hwang, Soon-Kyung;Chang, Seung-Hee;Lim, Hwang-Tae;Cho, Hyun-Seon;Cho, Myung-Haing
    • Toxicological Research
    • /
    • v.26 no.4
    • /
    • pp.261-266
    • /
    • 2010
  • In the workplace, the arsenic is used in the semiconductor production and the manufacturing of pigments, glass, pesticides and fungicides. Therefore, workers may be exposed to airborne arsenic during its use in manufacturing. The purpose of this study was to evaluate the potential toxicity of particulate matters (PMs) doped with arsenic (PMs-Arsenic) using a rodent model and to compare the genotoxicity in various concentrations and to examine the role of PMs-Arsenic in the induction of signaling pathway in the lung. Mice were exposed to PMs $124.4{\pm}24.5\;{\mu}g/m^3$ (low concentration), $220.2{\pm}34.5\;{\mu}g/m^3$ (middle concentration), $426.4{\pm}40.3\;{\mu}g/m^3$ (high concentration) doped with arsenic $1.4\;{\mu}g/m^3$ (Low concentration), $2.5\;{\mu}g/m^3$ (middle concentration), $5.7\;{\mu}g/m^3$ (high concentration) for 4 wks (6 h/d, 5 d/wk), respectively in the whole-body inhalation exposure chambers. To determine the level of genotoxicity, Chromosomal aberration (CA) assay in splenic lymphocytes and Supravital micronucleus (SMN) assay were performed. Then, signal pathway in the lung was analyzed. In the genotoxicity experiments, the increases of aberrant cells were concentration-dependent. Also, PMs-arsenic caused peripheral blood micronucleus frequency at high concentration. The inhalation of PMs-Arsenic increased an expression of phosphorylated Akt (p-Akt: protein kinase B) and phpsphorylated mammalian target of rapamycin (p-mTOR) at high concentration group. Taken together, inhaled PMs-Arsenic caused genotoxicity and altered Akt signaling pathway in the lung. Therefore, the inhalation of PMs-Arsenic needs for a careful risk assessment in the workplace.

The Anti-obesity Effects of Bangpungtongseong-san and Daesiho-tang: A Study Protocol of Randomized, Double-blinded Clinical Trial (방풍통성산 및 대시호탕의 항비만효과 분석: 단일기관 무작위배정 이중맹검 임상시험 프로토콜)

  • Oh, Jihong;Shim, Hyeyoon;Cha, Jiyun;Kim, Ho Seok;Kim, Min Ji;Ahn, Eun Kyung;Lee, Myeong-Jong;Lee, Jun-Hwan;Kim, Hojun
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.20 no.2
    • /
    • pp.138-148
    • /
    • 2020
  • Objectives: The aim of this study is to evaluate the effects of Bangpungtongseong-san (Fangfengtongsheng-san, BTS) and Daesiho-tang (Dachaihu-tang, DST) on weight loss and improvement in lipid metabolism and glucose metabolism. Furthermore, we intend to develop a prediction model for drug effects through the analysis of the single nucleotide polymorphism (SNP), gut-microbiota, and the expression of immune-related biomarkers. Methods: This study is a single-center, randomized, double-blind, parallel-design clinical trial. One hundred twenty-eight participants will be assigned to the BTS group (n=64) and DST group (n=64). Both groups will be administered 4 g medication three times a day for up to 2 weeks. The primary outcomes is weight loss. The secondary outcomes include bioelectrical impedance analysis, waist circumstance, body mass index, total cholesterol, high-density lipoprotein, triglyceride, insulin resistance. The exploratory outcomes include 3-day dietary recall, food frequency questionnaire, quality of life questionnaire, gut microbiota analysis, immune biomarkers analysis, and SNP analysis. Assessment will be made at baseline and at week 4, 8, and 12. Conclusions: This protocol will be implemented by approval of the Institutional Review Board of Dongguk University. The results of this trial will provide a systematic evidence for the treatment of obesity and enable more precise herbal medicine prescriptions.

Post-cancer Treatment with Condurango 30C Shows Amelioration of Benzo[a]pyrene-induced Lung Cancer in Rats Through the Molecular Pathway of Caspase-3-mediated Apoptosis Induction -Anti-lung cancer potential of Condurango 30C in rats-

  • Sikdar, Sourav;Mukherjee, Avinaba;Bishayee, Kausik;Paul, Avijit;Saha, Santu Kumar;Ghosh, Samrat;Khuda-Bukhsh, Anisur Rahman
    • Journal of Pharmacopuncture
    • /
    • v.16 no.3
    • /
    • pp.11-22
    • /
    • 2013
  • Objectives: The present investigation aimed at examining if post-cancer treatment with a potentized homeopathic drug, Condurango 30C, which is generally used to treat oesophageal cancer, could also show an ameliorating effect through apoptosis induction on lung cancer induced by benzo[a]pyrene (BaP) in white rats (Rattus norvegicus). Methods: Lung cancer was induced after four months by chronic feeding of BaP to rats through gavage at a dose of 50 mg/kg body weight for one month. After four months, the lung-cancer-bearing rats were treated with Condurango 30C for the next one ($5^{th}$), two ($5^{th}-6^{th}$) and three ($5^{th}-7^{th}$) months, respectively, and were sacrificed at the corresponding time-points. The ameliorating effect, if any, after Condurango 30C treatment for the various periods was evaluated by using protocols such as histology, scanning electron microscopy (SEM), annexinV-FITC/PI assay, flow cytometry of the apoptosis marker, DNA fragmentation, reverse transcriptase-polymerase chain reaction (RT-PCR), immunohistochemistry, and western blot analyses of lung tissue samples. Results: Striking recovery of lung tissue to a near normal status was noticed after post-cancerous drug treatment, as evidenced by SEM and histology, especially after one and two months of drug treatment. Data from the annexinV-FITC/PI and DNA fragmentation assays revealed that Condurango 30C could induce apoptosis in cancer cells after post-cancer treatment. A critical analysis of signalling cascade, evidenced through a RT-PCR study, demonstrated up-regulation and down-regulation of different pro- and anti-apoptotic genes, respectively, related to a caspase-3-mediated apoptotic pathway, which was especially discernible after one-month and two-month drug treatments. Correspondingly, Western blot and immunohistochemistry studies confirmed the ameliorative potential of Condurango 30C by its ability to down-regulate the elevated epidermal growth factor receptor (EGFR) expression, a hallmark of lung cancer. Conclusion: The overall result validated a positive effect of Condurango 30C in ameliorating lung cancer through caspase-3-mediated apoptosis induction and EGFR down-regulation.

Endoplasmic Reticulum Stress Response and Apoptosis via the CoCl2-Induced Hypoxia in Neuronal Cells (CoCl2 처리로 유도된 hypoxia상태에서 세포자살과 ER stress에 관련된 인자의 발현)

  • Kim, Seon-Hwan;Kwon, Hyon-Jo;Koh, Hyeon-Song;Song, Shi-Hun;Kwon, Ki-Sang;Kwon, O-Yu;Choi, Seung-Won
    • Journal of Life Science
    • /
    • v.20 no.12
    • /
    • pp.1820-1828
    • /
    • 2010
  • Cobalt(II) chloride, a chemical compound with the formula$CoCl_2$, has been widely used in the treatment of anemia, as a chemical agent for the induction of hypoxia in cell cultures, and is known to activate hypoxic signaling. However, excessive exposure to cobalt is associated with several clinical conditions, including asthma, pneumonia, and hematological abnormalities, and can lead to tissue and cellular toxicity. It is also known to induce apoptosis. One of the questions was that of whether $CoCl_2$ might induce apoptosis via endoplasmic reticulum (ER) stress in neurons. To address this question, first, the level of DNA fragmentation was measured for assay of apoptotic rates using $CoCl_2$ with neuron PC12 cells. After confirmation of apoptosis inductions, under the same conditions, the expression levels of ER stress associated factors [ER chaperones Bip, calnexin, ERp72, ERp29, PDI, and ER membrane kinases (IRE1, ATF6, PERK)] were examined by RT-PCR and Western blotting. These results indicated that apoptosis is induced through activation of ER membrane kinases via ER stress. In conclusion, during induction of apoptosis through $CoCl_2$-induced hypoxia in neuron PC12 cells, ER membrane kinase of IRE1 was dominantly up-expressed, and, consecutively, TRAF2, which has been suggested to be one of the links connecting apoptosis and ER stress, was strongly up-expressed.

Regional Differences in Mitochondrial Anti-oxidant State during Ischemic Preconditioning in Rat Heart

  • Thu, Vu Thi;Cuong, Dang Van;Kim, Na-Ri;Youm, Jae-Boum;Warda, Mohamad;Park, Won-Sun;Ko, Jae-Hong;Kim, Eui-Yong;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.2
    • /
    • pp.57-64
    • /
    • 2007
  • Ischemic preconditioning (IPC) is known to protect the heart against ischemia/reperfusion (IR)-induced injuries, and regional differences in the mitochondrial antioxidant state during IR or IPC may promote the death or survival of viable and infarcted cardiac tissues under oxidative stress. To date, however, the interplay between the mitochondrial antioxidant enzyme system and the level of reactive oxygen species (ROS) in the body has not yet been resolved. In the present study, we examined the effects of IR- and IPC-induced oxidative stresses on mitochondrial function in viable and infarcted cardiac tissues. Our results showed that the mitochondria from viable areas in the IR-induced group were swollen and fused, whereas those in the infarcted area were heavily damaged. IPC protected the mitochondria, thus reducing cardiac injury. We also found that the activity of the mitochondrial antioxidant enzyme system, which includes manganese superoxide dismutase (Mn-SOD), was enhanced in the viable areas compared to the infarcted areas in proportion with decreasing levels of ROS and mitochondrial DNA (mtDNA) damage. These changes were also present between the IPC and IR groups. Regional differences in Mn-SOD expression were shown to be related to a reduction in mtDNA damage as well as to the release of mitochondrial cytochrome c (Cyt c). To the best of our knowledge, this might be the first study to explore the regional mitochondrial changes during IPC. The present findings are expected to help elucidate the molecular mechanism involved in IPC and helpful in the development of new clinical strategies against ischemic heart disease.