• Title/Summary/Keyword: exponential offset

Search Result 13, Processing Time 0.031 seconds

A Dynamic Packet Recovery Mechanism for Realtime Service in Mobile Computing Environments

  • Park, Kwang-Roh;Oh, Yeun-Joo;Lim, Kyung-Shik;Cho, Kyoung-Rok
    • ETRI Journal
    • /
    • v.25 no.5
    • /
    • pp.356-368
    • /
    • 2003
  • This paper analyzes the characteristics of packet losses in mobile computing environments based on the Gilbert model and then describes a mechanism that can recover the lost audio packets using redundant data. Using information periodically reported by a receiver, the sender dynamically adjusts the amount and offset values of redundant data with the constraint of minimizing the bandwidth consumption of wireless links. Since mobile computing environments can be often characterized by frequent and consecutive packet losses, loss recovery mechanism need to deal efficiently with both random and consecutive packet losses. To achieve this, the suggested mechanism uses relatively large, discontinuous exponential offset values. That gives the same effect as using both the sequential and interleaving redundant information. To verify the effectiveness of the mechanism, we extended and implemented RTP/RTCP and applications. The experimental results show that our mechanism, with an exponential offset, achieves a remarkably low complete packet loss rate and adapts dynamically to the fluctuation of the packet loss pattern in mobile computing environments.

  • PDF

A DC-Offset Elimination Algorithm Based on an AR Model (AR모델을 이용한 직류 옵셋 성분 제거 알고리즘)

  • Chang Soo Young;Lee Dong Gyu;Kang Sang Hee
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.289-291
    • /
    • 2004
  • ln this paper, A dc-offset elimination novel algorithm based on an An model is proposed. The algorithm can eliminate dc-offset rapidly than other algorithms. The signal of fault current can be presented as a linear equation combined sinusoidal with exponential signals. Then, the linear equation can be presented an auto-regressive(AR) model and do-offset can be calculated by the equation of AR model. So it is possible to be removed the dc-offset from the original current signal. Performance evaluation of the algorithm was tested on condition that A-phase ground fault on 154kV 25km overhead transmission line.

  • PDF

A Study on DC Offset Removal using Low-Pass Filter in AT Feeder System for Electric Railway (전기철도 AT급전계통에 Low-Pass Filter를 이용한 직류옵셋 제거에 관한 연구)

  • Lee, Hwan;Jung, No-Geon;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.1108-1114
    • /
    • 2016
  • The cause of failure in the AT feeding system is divided into grounding, short-circuit of feeding circuit and internal faults of the railway substation. Since the fault current is very high, real-time current is detected and the failure must be immediately removed. In this paper, a new DC offset elimination filter that can remove component to decrease in the form of exponential function using low-pass filter was proposed in order to extract the fundamental wave from distorted fault current. In order to confirm the performance of the proposed filter method, AT feeder system was modelled by simulation tool and simulations were performed under various conditions such as fault location, fault resistance and fault voltage phase angle in case of trolley-rail short-circuit fault. When applying the proposed DC-offset removal method, it can be seen that the phase delay and gain error did not appear.

Joint Exponential Smoothing and Trend-based Principal Component Analysis for Anomaly Detection in Wireless Sensor Networks (무선 센서 네트워크에서의 이상 징후 감지를 위한 공동 지수 평활법 및 추세 기반 주성분 분석)

  • Dang, Thien-Binh;Yang, Hui-Gyu;Tran, Manh-Hung;Le, Duc-Tai;Kim, Moonseong;Choo, Hyunseung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.145-148
    • /
    • 2019
  • Principal Component Analysis (PCA) is a powerful technique in data analysis and widely used to detect anomalies in Wireless Sensor Networks. However, the performance of conventional PCA is not high on time-series data collected by sensors. In this paper, we propose a Joint Exponential Smoothing and Trend-based Principal Component Analysis (JES-TBPCA) for Anomaly Detection which is based on conventional PCA. Experimental results on a real dataset show a remarkably higher performance of JES-TBPCA comparing to conventional PCA model in detection of stuck-at and offset anomalies.

Evaluation of J-R Curve for Aluminum 5083 Alloy Weldment by Load Ratio Analysis (Load Ratio 해석에 의한 알루미늄 5083 합금 용접부의 J-R곡선 평가)

  • 윤한기;김연겸
    • Journal of Welding and Joining
    • /
    • v.15 no.4
    • /
    • pp.178-186
    • /
    • 1997
  • The purpose of this study is to evaluate the J-R curve characteristics for the 5083 aluminum alloy weldment by the load ratio analysis. The results of the load ratio analysis are compared with those of the J-R curve which are obtained by the ASTM unloading compliance method. The crack length calculated by the load ratio analysis is agrees well with the measured final crack length. The slope of the exponential J-R curve estimated by the load ratio analysis is slightly smaller than that by the ASTM unloading compliance method. The exponential correlation of the J-R curve for the 5083 aluminum alloy base metal by the load ratio analysis is J = 93.88 ${\Delta}{\alpha}^{0.375}$. That for the weld metal and HAZ is J = 69.87 ${\Delta}{\alpha}^{0.389}$ and J = 70.59 ${\Delta}{\alpha}^{0.359}$ respectively. The J-R curve obtained by the ASTM unloading compliance method is overpredicted and should be offsetted due to the initial negative crack. On the other hand, the load ratio analysis method can evaluate the J-R curve by only load displacement curve without particular crack measurement equipment.

  • PDF

Adaptive Input Traffic Prediction Scheme for Absolute and Proportional Delay Differentiated Services in Broadband Convergence Network

  • Paik, Jung-Hoon;Ryoo, Jeong-Dong;Joo, Bheom-Soon
    • ETRI Journal
    • /
    • v.30 no.2
    • /
    • pp.227-237
    • /
    • 2008
  • In this paper, an algorithm that provides absolute and proportional differentiation of packet delays is proposed with the objective of enhancing quality of service in future packet networks. It features an adaptive scheme that adjusts the target delay for every time slot to compensate the deviation from the target delay, which is caused by prediction error on the traffic to arrive at the next time slot. It predicts the traffic to arrive at the beginning of a time slot and measures the actual arrived traffic at the end of the time slot. The difference between them is utilized by the delay control operation for the next time slot to offset it. Because the proposed algorithm compensates the prediction error continuously, it shows superior adaptability to bursty traffic and exponential traffic. Through simulations we demonstrate that the algorithm meets the quantitative delay bounds and is robust to traffic fluctuation in comparison with the conventional non-adaptive mechanism. The algorithm is implemented with VHDL on a Xilinx Spartan XC3S1500 FPGA, and the performance is verified under the test board based on the XPC860P CPU.

  • PDF

Ruin Probability on Insurance Risk Models (보험위험 확률모형에서의 파산확률)

  • Park, Hyun-Suk;Choi, Jeong-Kyu
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.4
    • /
    • pp.575-586
    • /
    • 2011
  • In this paper, we study an asymptotic behavior of the finite-time ruin probability of the compound Poisson model in the case that the initial surplus is large. To compare an exact ruin probability with an approximate one, we place the focus on the exact calculation for the ruin probability when the claim size distribution is regularly varying tailed (i.e. exponential claims and inverse Gaussian claims). We estimate an adjustment coefficient in these examples and show the relationship between the adjustment coefficient and the safety premium. The illustration study shows that as the safety premium increases so does the adjustment coefficient. Larger safety premium means lower "long-term risk", which only stands to reason since higher safety premium means a faster rate of safety premium income to offset claims.

A Delta-Sigma Fractional-N Frequency Synthesizer for Quad-Band Multi-Standard Mobile Broadcasting Tuners in 0.18-μm CMOS

  • Shin, Jae-Wook;Kim, Jong-Sik;Kim, Seung-Soo;Shin, Hyun-Chol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.4
    • /
    • pp.267-273
    • /
    • 2007
  • A fractional-N frequency synthesizer supports quadruple bands and multiple standards for mobile broadcasting systems. A novel linearized coarse tuned VCO adopting a pseudo-exponential capacitor bank structure is proposed to cover the wide bandwidth of 65%. The proposed technique successfully reduces the variations of KVCO and per-code frequency step by 3.2 and 2.7 times, respectively. For the divider and prescaler circuits, TSPC (true single-phase clock) logic is extensively utilized for high speed operation, low power consumption, and small silicon area. Implemented in $0.18-{\mu}m$ CMOS, the PLL covers $154{\sim}303$ MHz (VHF-III), $462{\sim}911$ MHz (UHF), and $1441{\sim}1887$ MHz (L1, L2) with two VCO's while dissipating 23 mA from 1.8 V supply. The integrated phase noise is 0.598 and 0.812 degree for the integer-N and fractional-N modes, respectively, at 750 MHz output frequency. The in-band noise at 10 kHz offset is -96 dBc/Hz for the integer-N mode and degraded only by 3 dB for the fractional-N mode.

A DFT Based Filtering Technique to Eliminate Decaying dc and Harmonics for Power System Phasor Estimation

  • Oh Yong- Taek;Balamourougan V.;Sidhu T.S.
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.2
    • /
    • pp.138-143
    • /
    • 2005
  • During faults, the voltage and current signals available to the relay are affected by the decaying dc component and harmonics. In order to make appropriate and accurate decisions, most of the relaying algorithms require the fundamental frequency phasor information that is immune to decaying dc effect and harmonics. The conventional Fourier ph as or estimation algorithm is affected by the presence of decaying-exponential transients in the fault signal. This paper presents a modified Fourier algorithm, which effectively eliminates the decaying dc component and the harmonics present in the fault signal. The decaying dc parameters are estimated by means of an out-of-band filtering technique. The decaying dc offset and harmonics are removed by means of a simple computational procedure that involves the design of two sets of Orthogonal digital OFT filters tuned at different frequencies and by creating three off-line look-up tables. The technique was tested for different decay rates of the decaying dc component. It was also compared with the conventional mimic plus the full cycle OFT algorithm. The results indicate that the proposed technique has a faster convergence to the desired value compared to the conventional mimic plus OFT algorithms over a wide range of decay rates. In all cases, the convergence to the desired value was achieved within one cycle of the power system frequency.

Implementation of Absolute Delay Differentiation Scheme in Next-Generation Networks (차세대 네트워크에서의 절대적 지연 차별화 기능 구현)

  • Paik, Jung-Hoon;Kim, Dae-Ub;Joo, Bheom-Soon
    • 전자공학회논문지 IE
    • /
    • v.45 no.1
    • /
    • pp.15-23
    • /
    • 2008
  • In this paper, an algorithm, that provisions absolute differentiation of packet delays is proposed, simulated, and implemented with VHDL on XPC 860 CPU based test board with an objective for enhancing quality of service (QoS) in future packet networks. It features a scheme that compensates the deviation for prediction on the traffic to be arrived continuously. It predicts the traffic to be arrived at the beginning of a time slot and measures the actual arrived traffic at the end of the time slot and derives the difference between them. The deviation is utilized to the delay control operation for the next time slot to offset it. As it compensates the prediction error continuously, it shows superior adaptability to the bursty traffic as well as the exponential traffic. It is demonstrated through both simulation and the real traffic test on the board that the algorithm meets the quantitative delay bounds and shows superiority to the traffic fluctuation in comparison with the conventional non-adaptive mechanism.