• Title/Summary/Keyword: exponential lifetime distribution

Search Result 63, Processing Time 0.022 seconds

Time-Censored Ramp Tests with Stress Bound for Exponential (스트레스 한계가 있는 램프시험의 최적설계: 지수수명분포의 경우)

  • Bai, Do-Sun;Chun, Young-Rok;Cha, Myung-Su
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.22 no.3
    • /
    • pp.459-471
    • /
    • 1996
  • This paper considers ramp tests for exponential lifetime distribution when there are limitations on test stress and test time. The inverse power law and a cumulative exposure model are assumed. Maximum likelihood (ML) estimators of model parameters and their asymptotic covariance matrix are obtained. The optimum ramp test plans are also found which minimize the asymptotic variance of the ML estimator of the log mean life at design constant stress. For selected values of the design parameters, tables useful for finding optimal test plans are given. The effect of the pre-estimates of design parameters is studied.

  • PDF

Empirical Bayesian Prediction Analysis on Accelerated Lifetime Data (가속수명자료를 이용한 경험적 베이즈 예측분석)

  • Cho, Geon-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.8 no.1
    • /
    • pp.21-30
    • /
    • 1997
  • In accelerated life tests, the failure time of an item is observed under a high stress level, and based on the time the performances of items are investigated at the normal stress level. In this paper, when the mean of the prior of a failure rate is known in the exponential lifetime distribution with censored accelerated failure time data, we utilize the empirical Bayesian method by using the moment estimators in order to estimate the parameters of the prior distribution and obtain the empirical Bayesian predictive density and predictive intervals for a future observation under the normal stress level.

  • PDF

Optimal Burn-In Procedures for a System Performing Given Mission

  • Cha, Ji-Hwan
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.3
    • /
    • pp.861-869
    • /
    • 2006
  • Burn-in is a widely used method to improve the quality of products or systems after they have been produced. In this paper, the problem of determining optimal burn-in time for a system which performs given mission is considered. It is assumed that the given mission time is not a fixed constant but a random variable which follows an exponential distribution. Assuming that the underlying lifetime distribution of a system has an eventually increasing failure rate function, an upper bound for the optimal burn-in time which maximizes the probability of performing given mission is derived. The obtained result is also applied to an illustrative example.

  • PDF

Estimation of Insulation Life of PAI/Nano Silica Hybrid Coil by Accelerated Thermal Stress (가속된 열적 스트레스에 의한 PAI / Nano Silica 하이브리드 코일의 절연수명 추정)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.52-60
    • /
    • 2019
  • In this paper, four types of insulation coils were fabricated by adding various kinds of glycols to improve the flexibility and adhesion of insulating coils in varnish dispersed with PAI / Nano Silica_15wt%. The applied voltage and frequency were 1.5 kV / 20 kHz for accelerated life evaluation. Through the 6th temperature stress level, the cause of the insulation breakdown of the coil was ignored and only the breakdown time was measured. The Arrhenius model was chosen based on the theoretical relationship between chemical reaction rate and temperature for estimating the insulation life of the coil due to accelerated thermal stress. Three types of distributions (Weibull, Lognormal, Exponential) were selected as the relationship between thermal stress model and distribution. The average insulation lifetime was estimated under the temperature stress of four types of insulation coils through the relationship between one kind of model and three kinds of distributions.

Use of Lèvy distribution to analyze longitudinal data with asymmetric distribution and presence of left censored data

  • Achcar, Jorge A.;Coelho-Barros, Emilio A.;Cuevas, Jose Rafael Tovar;Mazucheli, Josmar
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.1
    • /
    • pp.43-60
    • /
    • 2018
  • This paper considers the use of classical and Bayesian inference methods to analyze data generated by variables whose natural behavior can be modeled using asymmetric distributions in the presence of left censoring. Our approach used a $L{\grave{e}}vy$ distribution in the presence of left censored data and covariates. This distribution could be a good alternative to model data with asymmetric behavior in many applications as lifetime data for instance, especially in engineering applications and health research, when some observations are large in comparison to other ones and standard distributions commonly used to model asymmetry data like the exponential, Weibull or log-logistic are not appropriate to be fitted by the data. Inferences for the parameters of the proposed model under a classical inference approach are obtained using a maximum likelihood estimators (MLEs) approach and usual asymptotical normality for MLEs based on the Fisher information measure. Under a Bayesian approach, the posterior summaries of interest are obtained using standard Markov chain Monte Carlo simulation methods and available software like SAS. A numerical illustration is presented considering data of thyroglobulin levels present in a group of individuals with differentiated cancer of thyroid.

Breakdown Characteristics and Lifetime Estimation of Rubber Insulating Gloves Using Statistical Models

  • Kim, Doo Hyun;Kang, Dong Kyu
    • International Journal of Safety
    • /
    • v.1 no.1
    • /
    • pp.36-42
    • /
    • 2002
  • This paper is aimed at predicting the life of rubber insulating gloves under normal operating stresses from relatively rapid test performed at higher stresses. Specimens of rubber insulating gloves are subject to multiple stress conditions, i.e. combined electrical and thermal stresses. Two modes of electrical stress, step voltage stress and constant voltage stress are used in specimen aging. There are two types of test for electrical stress in this experiment: the one is Breakdown Voltage (BDV) test under step voltage stress and thermal stress and the other is lifetime test under constant voltage stress and temperature stress. The ac breakdown voltage defined as the break-down point of insulation that leakage current excesses a limit value, l0mA in this experiment, is determined. Because the very high variability of aging data requires the application of statistical model, Weibull distribution is used to represent the failure times as the straight line on Weibull probability paper. Weibull parameters are deter-mined by three statistical methods i.e. maximum likelihood method, graphical method and least squares method, which employ SAS package, Weibull probability paper and FORTRAN, respectively. Two chosen models for predicting the life under simultaneous electrical and thermal stresses are inverse power model and exponential model. And the constants of life equation for multistress aging are calculated using numerical method, such as Gauss Jordan method etc.. The completion of life equation enables to estimate the life at normal stress based on the data collected from accelerated aging test. Also the comparison of the calculated lifetimes between the inverse power model and the exponential model is carried out. And the lifetimes calculated by three statistical methods with lower voltage than test voltage are compared. The results obtained from the suggested experimental method are presented and discussed.

Reliabilty of a System with Standbys and Spares

  • Park, Kyung-Soo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.3 no.2
    • /
    • pp.83-91
    • /
    • 1977
  • This paper investigates the reliability characteristics of a system consisting of a unit operating on-line and backed by n spares among which m units are kept "warm" as standbys ready to go on-line. The on-line unit has an arbitrary lifetime distribution, while the warm standbys have exponential failure time distributions. The Failed units are repaired and brought back to service. The cold spares do not fail while in storage. Solution of this extremely complicated queuing problem using a "renewal counting" approach is presented and extended to the situation where the warming-up takes non-negligible time. Finally, an approach to the economic system management is discussed, considering the long-run availability, cost of keeping spares and repair facility, and the associated cost of restarting the system, after a system failure. The model presented in this paper will have many applications including the determination of the spares inventory and the number of field spares to be "carried".

  • PDF

An economic design of CUSCORE control chart for quality characteristics with exponential distribution (제품의 수명특성 관리를 위한 누적점수 관리도의 경제적 설계)

  • Kim, Jong-Gurl;Jeong, Young-Min
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1993.10a
    • /
    • pp.31-39
    • /
    • 1993
  • This paper considers a procedure for the economic design of a cumulative score(CUSCORE) control chart and more sensitive than X-type control chart for small shift to control the mean of a process with a exponentially distributed quality characteristic. An expected loss - cost model as a function of design variables(sample size, sampling interval, scoring limit and decision limit) is derived. Direct search techniques are used to optimize the model subject to ARL in control. Numerical examples and sensitivity analysis of the model are presented. For selected values of situation parameters a comparison study with CUSUM charts is given. CUSCORE control charts compare favourably with CUSUM charts in cost for speedy production process. The proposed control chart can be directly applied for controlling the lifetime characteristics.

  • PDF

A(Q, r) Spare-Part Inventory Model with Gamma Leadtime

  • Park, Young-Taek;Park, Won-Jae;Hur, Jun
    • Journal of Korean Society for Quality Management
    • /
    • v.24 no.1
    • /
    • pp.44-49
    • /
    • 1996
  • This paper deals with a (Q, r) spare-part inventory model with gamma leadtime. In the model, if the inventory level falls to a reorder point r, a replenishment order quantity Q is ordered. Assumming that the number of operating units is one and the lifetime of a unit follows an exponential distribution, we derive the expected cost rate and suggest a procedure to obtain the optimal pair of (Q, r) minimizing the cost rate. A numerical example is presented to explain the model.

  • PDF

Mixed Replacement Designs for Life Testing with Interval Censoring

  • Tai Sup;kesar Singh
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.2
    • /
    • pp.443-456
    • /
    • 1999
  • The estimation of mean lifetimes in presence of interval censoring with mixed replacement procedure are examined when the distribution s of lifetimes are exponential. it is assumed that due to physical restrictions and/or economic constraints the number of failures is investigated only at several inspection times during the lifetime test; thus there is interval censoring. Comparisons of mixed replacement designs are made with those with and without replacement The maximum likelihood estimator is found in an implicit form. The Cramer-Rao lower bound which is the asymptotic variance of the estimator is derived. The test conditions for minimizing the Cramer-Rao lower bound and minimizing the test costs within a desired width of the Cramer-Rao bound have been studied.

  • PDF