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f Abstract

parameters is studied.

This paper considers ramp tests for exponential lifetime distribution when
there are limitations on test stress and test fime. The inverse power law and
a cumulafive exposure model are assumed. Maximum likelihood (ML)
estimators of model parameters and their asympiofic covariance matrix are
obtained. The opfimum ramp test plans are also found which minimize the
asymptotic variance of the ML estimator of the log mean life at design consfant
stress. For selected values of the design parameters, tables useful for finding
optimal test plans are given. The effect of the pre-estimates of design

1. INTRODUCTION

Accelerated life tests (ALTs) are used to
obtain information quickly on the lifetime
distribution of materials or products. The test
items are run at higher-than-usual levels of

stress to induce early failures. The test data
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obtained at the accelerated conditions are
analyzed in terms of a model, and then
extrapolated to the specified design stress to
estimate the lifetime distribution.

One way of applying stress to the test item
is a progressive stress scheme which allows

the stress setting of an item to be increased
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continwously in time. An ALT with linearly
increasing siress is called a ramp test. Ramp
tests are commonly used for various materials
end products; for example, fatigue testing [17],
capacitors [6, 19, insulations [7, 18], and
integrated circuits [4] etc.

Statistical theory for progressive stress ALTs
has been studied by several authors, Yurkowski
et al[21] surveyed early statistical methods.
Allen [1] suggested a statistical model for units
taving exponential lives under progressive
stress and presented methods of estimating the
parameters, Yin and Sheng [20] derived a
Lfetime distribution of an item under progres-
sive stress, and studied the properties of the
maximum likelihood (ML) estimators of param-
eters under a ramp test when the test items
have exponeniial lifetime distribution, Nilsson
[13] considered the problem of estimation the
parameters of Weibull distribution under a
ramp test. Bai et al, [2] considered the design
of ramp tests with two ramp rates for Weibull
distribution under Type I censoring, and
determined low ramp rate and proportion of
test items allocated to low ramp rate minimiz-
ing the asymptotic variance of the ML
estimator of a specified percentile at design
slress.

In practice, however, there are cases where
the stress can not be increased indefinitely in
a ramp test because: i) too high stress may
cause failure modes other than that under
consideration and/or ii) the test equipment may
not be able to provide such a high stress. This

il

paper considers time-censored ramp tests for
items with exponential lifetime distribution
when there is a stress upper bound. ML
estimators of model parameters and their
asymptotic covariance matrix are obtained. The
optimum tamp test plans are found which
minimize the asymptotic variance of the ML
estimator of the log mean life at design
constant stress. For selected values of design
parameters, tables useful for finding optimal
test plans are given. The effects of the pre-

estimates of design parameters are investigated.

Notation

s(t) stress at time ¢

Sy design siress

A upper bound of test stress

g standardized design stress (&=
545;)

7 censoring time

k ramp rate

e =s5,/k

T =min( {, 7)

§ ={/7

& (s) mean of exponential distribution at
stress §

a, B parameters of the inverse power
law

¥{-) distribution function of standard
smallest extreme value distribution;
¥ (x)=1 —exp(—expx))



2. The Model

Test Procedure

In a ramp test, the stress on an item s a
linear function of test time ¢, say s(t)=kz, where
i{>0) is the ramp rate, When there is a stress

bound s, the test procedure is as follows:

1. All test items are placed on a ramp test
with ramp rate £.

2. The test is continued until all test items
fail or a prespecified censoring time 7.

3. If the stress reaches s, before 7, it
remains constant at that level.

Let {=s,/k. Two fest situations where { <
n (stress reaches s, before censoring time 7)
and )7 (stress does not reach s, by
cemsoring time 7) are possible. Figure 1
Jepicts these test situations.
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Figure 1. Ramp test situations under stress
bound
{ + dencte failure times}

Assumptions
The following assumptions are made:

1. At any constant stress s, the lifetime of
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a test item follows an exponential distri-

bution with mean #(s),
2. 8{s) has the inverse power law relation-
ship with stress; that is,

8 (s)=¢1s”, (1)

where ¢ and £ are unknown constants.

3. For the effect of changing stress in a
ramp test, a cumulative exposure model
holds. (See, Nelson [12])

4. The lifetimes of test items are statistically
independent.

Lifetime Distribution under Ramp Tests

In accelerated life models, the reliability
function R{z;s)=Pr{T=¢s] at constant stress s
has the form

R{;s)=R{ ¢ (5)0), (2)

where R; is some baseline reliability function
and ¢(s) is a life-stress relationship. For the
accelerated life model, see Crowder et al.[5].
Assuming the cumulative exposure model,
the distribution function of lifetime T under

stress s(¢) is obtained as
FO=1-Ro | [ ¢ 6thdu |

See Bai and Chun [3] and Nelson [12].
Under the exponential lifetime and inverse
power law model, Ri{)=¢” and ¢{s)=1/ 8{s)=¢"s".
Thus the distribution function F(z) is
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F() = l—expl ——e'”J:(s(u))‘gdu ]

Under the above test procedure, the stress at

time ¢ is
s{¢) = min(kt,s,), 0<{1{ 7. (3

The distribution function of T is derived as

B, t{ 0
Fip= 1 1—epl—clde ®), 0<i{¢ (4
1-exp{ —le Eedde ™), ¢ <t

where 0=k Bl i) cl)= shu- §H e o)

and 7{ +) is an indicator function defined as

1, ifxe »
1(0= _
0, otherwise

The probability density function of T is

0, {0
A= (%6 expl—cilne ®), (E- ST

ste “expl—(el D), ¢ <1

3. Parameter Estimation

Maximum Likelihcod Estimators

Suppose that n sample items are tested, f; is
observation {, and the comesponding log
likelihood is L;i=1,---,n. Then the log likeli-
hood L, for » independent observations is
L=2 L. This is a function of parameters «
and 8. The ML estimators & and B are the
parameter values that maximize the log likeli-

hood L.

Let 7= min(&,7), D,{t|0<¢{ v}, and
D=ft| v <1 7}, and ufd)=Ip(@), i=12. For
the case with censoring the following two

situations can be considered.
(i) The case of £ < »

When £ <7, r=1{ and the ML estimators
of o and £ are the solution of the following
two equations. For detailed derivations, see

Appendix.
a_Ql*’SfI( ﬂ+1)(Qz+?h n)—{ntn}v ]
¢ = (B+ Dlntny
{wy 18( ﬁ+1)+WzIQ1_Wz( 18+1)Q3
+{ws BB+ Dewal B+ 1ws)sf = 0,

. (5)
(6)

where n=ILu{t), =12, and nen—n—n, w=QendnlT),
wi= Q—mIn( T), wi= —m t+nd 9 — T), wy= nbmy
ws=(nn) 7, Q= 5, p k1™, Q= 3, pt,
0= Zep k17 int), and Qu= 5, cp InCs).

The ML estimator A has the following
properties.

- Replacing s, of (6) with k7, we can
obtain an equation in # independent of
k. Note that £ is indirectly related to &
by test data.

slet g=tfA,v=r/A and p'=7/4A,
where A is an arbitrary constant. Substi-
tating A¢/, A t7and A 7 “fors, v and
7 in {6), respectively, we can derive an
equation independent of A. That is, & is
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invariant under scale transformation of the
data.

(it) The case of ¢} 7

When {7, T=7 and (=0 for all 7 and
thus n=0-=0. The ML estimators of ¢ and
£ can be obtained from (5) and (6) with
wi=0:, w=0, we=n, wem i,

For the case without censoring, the ML
estimators can be obtained from (5) and (6)
with 770, since 1—u,(f)—w(r}=0 for all &

Fisher Information Matrix and Asymptotic

Covariance Matrix

The Fisher information matrix is obtained by
teking expectations of the negative of the
second partial derivatives of the log likelihood
function with respect to « and 2. The Fisher
information matrix F, from » test items is
Fm=nF, where F is the Fisher information
matrix from a single item and is derived in

the Appendix. The results are as follows,

FD=H'F

A |+¢"-: _A: - (A:"‘Amﬂ{fﬁ} :| (?)
" [ _A!_m_'t‘t}lﬂ{sﬁ) A,*‘ZMH{Sﬁ}"MHL]ln{jk} '

where A= ¢,(z), A={n ¢ )+ 2 B+1),
As{Ad (229 0z) + $ L)) B+10, A=(i— ¢,(2))
Pia), dlpR1-e?, gy Intudeda,
$ly) = fjhl’(u]e'"du, n=el ), n= a+ln{ f+1}
(B} —( 8+ Dinls,), and z:=cA 7)e ",

For the case without censoring, we can

obtain the elements of Fisher information
matrix by setting 7—c0. Note that when 7
—0, ¢ (z;)—1.0 and consequently A +A.=1.0

The asymptotic covariance matrix of ML
estimators & and # is the inverse matrix of
Fy. This covariance matrix is used in interval
estimation and testing hypotheses for model
parameters. For the details on interval estima-
tion and test of hypotheses in life testing, see
Mann et al[9], Lawless [8], and Nelson [13,
14].

Example 1: We illustrate the ML method
with artificial data generated under a ramp test
with a stress bound. Consider a pair of parallel
disk electrodes immersed in oil. The test
situation is that voliage at use condition 5,20
(kV), the upper bound of test stress 5,=40 (kV),
ramp rate k=20 (V/sec) and censoring time
7=2,400(sec). It is known that the lifetime
distribution is exponential, and the lifetime has
inverse power law relationship with voltage
siress. Under this sitwation with the values of
true parameters in the inverse power law (1)
e=117.5 and £=10.5, a sample of size n=50
is generated and are given in Table 1.

From this artifical data ML estinates & and
‘é are obstained. To obtain ML estimate ,3
we transformed the data with scale factor A=
1,000 and used the bisection method. The
estimated values of @, £ and Inf(sy) are
1267111, 11.4136 and 13.6767, respectively.
Using (7), the estimate F\, of Fisher information
matrix F, is obtained, and the estimate V of
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asymptotic covariance matrix for & and £ is ic variance is
the inverse matrix of £, The results are Asvar(in 4 (5,)) = Asvar( 4 )+
xAscov( ¢ , B 1+ PAsvar{ £). (8)

. r 10000 —10.6052 —

=50 .

M T 112.4301J

) [210.7434 19‘8699]
19.8699 1.8736

Optimum Ramp Tests
= From the Fisher information matrix (7),
formula (8) can be written as
95% confidence intervals for model parameters
a, £ and In&(s,) are (98.26,155.16), (8.73, Asvar(in & (s )J=(A‘*A‘)glﬂiz)jq?ﬂ";a}m’,

[4.10) and (11.77, 15.58), respectively.

)

Table 1. Data under a romp test with stress bound
(D0 te D, -1if tex and =2 if {2 7)

t t t t t !
{second) 0 (second) ID (second) | 1D {second) ID {second) ID
1,469.08 4] 1,851.96 0 2,300.26 1 1,897.84 0 1,717.69 0
1,609.45 g - 240000 2 20%1.61 1 2,141.54 1 1,962.91 g
1,962.61 0 194036 0 2,134.87 1 1,992.86 0 . 1,884.03 0
2,400.00 2 1,824.03 Q 1,974.20 ] 1,916.45 0 2,117.28 1
2,054.50 1 238689 1 1,897.88 0 2,400.00 2 212542 1
1,670.63 0 2,218.22 1 {.769.97 0 2,014.09 1 2,346.61 1
2,383.80 1 2,400.00 2 2,400.00 2 2,400.00 2 2,350.80 1
222128 1 2,293.37 1 2,119.29 13 196590 0 1,954.25 0
1,774.78 0 : 183561 0! 240000 2 2,400.00 2 1,746.84 0
2,247.55 1 2,047.78 1 | 2,073.97 1 2,265.68 1 1,932.42 0 i

4. Optimum Test Plans where & =55, is the standardized design
stress.
Optimality Criterion and Decision Variable Let p; and p, be the probabilities that an
Minimizing the asymptotic variance of ML item will fail 7 at s; and at s5,, respectively.
estimator of log mean life at design stress s, Then we have

i3 used as the optimality criterion. An optimum
ramp fest is determined by ramp rate k. The Pi= l—exp{—sf ne},
ML estimator of log mean life at s, is
pr=l—exp{—sf ne ).
Ind(s)=t+ B,
Let ¢ = {/7. Then z,, z; and z. defined in

where x= —In(s,). The corresponding asymptot- (7) can be characterized in terms of p,, ¢ and
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l — £l —p i B+1), 0 & (],
T - e P —p B, i £ 21 ]

= ~In(—In(l —p,)+In( B+ 1)—1In( £),

z

) l—(l—&)m(l—ph), ifO(E(I’
> o, if £ =1

and £ can be expressed in terms of p, p,
and & as A={In{—In(1—p))—In(—In{i—p,)}/in
(&)

Thus Asvar(ln 8 (s)) can be expressed in
terms of py, p,, ¢ and £. Further, let a and
b be

aqa= gf'_:(ph) ]
b= T (p)— T (p,). (10}

a and b are standardized log censoring time
and slope, respectively; see Kielpinski and
Nelson [11]. Then, Asvar(ln & (s, can also
be expressed in terms of @, b, ¢ and §. It
s more convenient to represent Asvar {ln
(s} in terms of @ and b than p,; and p,
when p; and p, are close to zero.

Thus the design problem becomes: Given the
values of @, b and &, find the value §* which
minimizes Asvar(ln 6 (s)). Optimum ramp rate

K s
K=s,/(£7 7). (11)

Since the optimur ramp test depends on

design parameters @ and b, we must obtain
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it

their values from past experiences, similar data,
or a preliminary test. £ can be found through
an ' optimization procedure such as Powell
algorithin {16]. We have computed optimum
ramp test plans for various values of @, b and
& Table 2 shows £, probability Dg of failure
of a test item by #» and asymptotic variance
when ¢=0.1(0.2)0.5. In Table 2, the selected
values of @ are —2.0, 0.0, 2.0 and 4.0, and
the corresponding valwes of p, are 0.127,
0.632, 0999 and 1000, respectively. The
values of b selected are b=a+c, where c=4.0
(2.0012.0, and corresponding values of p, are
0.018149, 0.002476, 0.000335, 0.000045 and
0.000006, respectively. For the selected values
of a and b and corresponding values of g, and
Py see, Meeker [101.

Example 2 :Assume a ramp test of a pair
of parallel disk electrodes immersed in oil. The
voltage across the electrodes is increased
linearly with time. The lifetime follows the
exponential distribution and has the inverse
power law relationship with voltage stress. The
stress upper bound and the design constant
stress are 40 kV and 20 kV, respectively.
Suppose that about 2.0% of test items fail
within 10(hour} of testing under 20 kV and
99.9% under 40 kV. From (10), preestimates
of a and b are about 2.0 and 6.0, respectively,
and 8=0.5. Table 2 gives & = 0.9095 and
k= 40/ £ 1) = 40/(0.9095 X 10.0) = 4.398
(kV/hour), the asymptotic variance of In (s
is about 44.2 and the probability that a test
itern will fail by #=10.0(hour) under ramp test
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Toble 2. Optimum ramp test palns

40

60 | 80

100

1010 | -2.00 2.12171
01742
06109 .

6.0878

8753
0424
2.5842

0.00 | 6.0815| .
0188 .
o7s .

B677
.2653
6169

2.00

9155 .
2180 .
0373 .

.8697
8643
1690

4.00

1.2949)1.

9931
031

1.0182
9890
1150

0.30 | -2.00 | 2.0042| .
0158 .
0708 .

.BB63
0306
3.2710

0.00

02641 .
25021 .
0804 .

.8829
1910
8111

2.00

0045 .
8383 .
0369 .

8847
7643
2079

4.00 | 1.0301| .
8872 .
0280 .

9587
9983
1082

050 | -2.00

1.3779 .
0137 .
0872 .

002
0230
45109

0.00

5269 .
1873 .
.0856| .

8992
147
1.1445

2.00

8095 .
J445
0442 .

8013
5648
2825

4.00

8733 .
966 .
Ri

9472
9951
1140

1} Optimum &

2) Faiture Probability p,
3) Asvarlin ¢(sg)} x 103

i about (.74,

Effects of Pre-Estimates

To use an optimum test plan, we need
information about the values of design param-
eters & and b. Incorrect choice of them gives
a poor estimate of log mean life at design
constant stress. The effects of incomect pre-
estimates of @ and b in terms of asymptotic
variance ratio V7V (= 1.0) were studied,
where V' and V' are Asvar(In6(s,)) under
incorrect preestimates of a and b and that
evaluated at true values, respectively.

For each pair {ah) of true values we
computed the ratios V'/V" for misspecifications
+1 and *2 in both ¢ and b, and found the
maximum and the minimum of the ratios. Table
3 shows the maximum and the minimum of
the ratios and the cormesponding deviations
from @ and b when &=0.5. We can see from
Table 3 that: ( 1 ) sensitivity to misspecification
is more acute when b is small (i.e., p, is large);
{ii) when a is misspecified +1 or +2 and b
is misspecified —1 or —2, the ratios are
maximum except the pair (b} of which the

maximum ratio is small (e.g., less than 1%).

The Case without Time-Censoring
In this case, A+4,=1.0 in formula (7). The

asymplotic variance (8) can be expressed as

(A;—In( b‘)}z_

Ay—Aj (12)

Asvar(In 8 (s)) = 1+

Since v = { =s,/k, A; can be written as

LI EN G v (ED (10

Az FIS|
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Table 3. Effects of incorrect pre-estimates of a and b [#=0.5)

determinant of the Fisher information matrix
and is positive, the value & * satisfying A=In
(&) gives a minimum of (12). Thus, if pre-
eatimates of ¢ and £ are given, we can
obtain the optimum ramp raie K=s/0".
Differentiating A, with respect to { gives

A= — ¢ (v (O LB+ (O for all )
0, and llITlAz—D and hm A=
fore, the value of & satxsfymg A.=In( &) is

— . There-

unique,

Misspecification of & and b by+1 Misspecification of a and b by+2
True Devia_tion : Deviation Deviation Deviation
Values Yielding o Yielding i Yielding Yielding
Max. Max, Min. Min. Max. Max. Min. Min.
Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio
a|b a b a b a b a b
27 21147 1 1 1.087 | +1 +1 |2446 | +2 2 1342 2 +2
-2 4 | 1.422 +1 -1 1.002 -1 +1 1.531 +2 2 1.003 -2 +2
2| 6:1002 -1 n 1.000 -1 +1 11006 | +2 2  1.000 -2 +2
-2 | 811000 -1 -1 1.000 - +1 1.000 -2 -2 {1.000 2 | +2
-2 | 10 | 1.000 -1 +1 1.000 -1 -1 1.000 2 +2 (1000 +2 -2
| 0 4 |1.399 +1 -1 1.002 +1 +1 1.513 +2 2 1.003 +2 +2
;0 6 1.001 +1 -1 | 1.000 -1 +1 [1012] +2 2 |1.000| +2 «2
0 81000 -1 1 :1.000 -1 +1 1001 | 42 2 | 1.000 2 +2
0 {10 | 1.000 -1 +1 1000 +1 +1 11000 +2 -2 | 1.000 -2 2
0|12 11.000 -1 +1 1.000 -1 -1 (1000 +2 +2 11.000| +2 -2
2| 6 [1.017] +1 “1 1.000 -1 A | 417 +2 2 |1.001 2 +2
2| 8[1.005| +1 -1 | 1.000 -1 -1 1.239 | +2 2 | 1.000 2 +2
2110|1002 | =1 -1 | 1.000 -1 +7 | 1083 <2 2 | 1.000 2 +2
2 112 11002 | +1 -1 11.000 -1 +1 11046 | 42 2 | 1.000 -2 +2
2| 14 | 1.001 +1 +1 1.000 -1 +1 1.031 +2 2 1.000 -2 +2
4| 8 (1283 +1 -1 1.011 -1 4 | 7788 +2 2 |1018 -2 -2
4110 | 1184 | -1 -t | 1.008 -1 -1 | 2834 2 2 | 1.13 2 2
] 4 |12 11120 +1 -1 ;1.00? -1 -1 2.386 +2 2 1.010 -2 +2
14|14 (1077 +1 -1 | 1.006 - 41 2116 | 42 2 | 1.009 -2 +2
4 | i6 | 1.058 | +1 -1 1.005i - +1 1.925 | +2 2 ]1.008 -2 +2 |
where v({)=c({)e®. Since Ai—A7 is Example 3 : Consider a ramp test of an

insulating fluid whose breakdown time follows
the exponential distribution and has the inverse
power law relationship with voltage stress.
Suppose that s,~20(kV), 5,=40(kV), and prees-
timated values of @ and £ from a preliminary
test or past experiences are 25.0 and 8.0,
respectively. We used the bisection methed to
solve the equation A=In{d)} and obtained
optimum ramp rate k =1.407(kV/hour),
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5. The Case of No Stress Bound

In this section, we consider a special case
where there is no stress bound, ie., s5,—.
Ther, 7=7% and wlt)=0 for all 2. The ML
sstimators are the same as those of the case
where there is a stress bound and ¢ D 7.

Define Bi=Aln(s, A {z, ¢ (z)+ ¢z ) 8+1),
and B.=Adn{s, 24:nls A=l ¢ (o 22 0o b €42}
(B+1), where z=2+( 8+ Inls)= ¢ +In( 8+ 1)+
In(k). Then B, and B; do not depend on In(s,)
and since z;=0 when ()7, A=0. The Fisher

information matrix is then

F[A] —B (14)
L—8 38

Asymptotic variance (8) is now

XA +2xB+B.
TAB_F (15)

Asvar(ln & (5,))= BB

If pre-estimates of o and £ are given, the
optimum ramp rate & which minimizes (15)
can be determined by using a numerical
method,

If, in addition, there is no time-censoring, a
closed form solution & can be found. The ML
estimators can be obtained from equations (5)
and (6) with m=n=0=0 since ult)=1 for all
i The resulis coincide with those of Yin and
Sheng [20]. The Fisher information matrix is
obtained by taking limit rli_l:nGO ¢(z)=1, lim

T

dAz)=— 7 and lim ¢.(z)= 7¥%6+ ¥? of B,

T —

and B, where 7 is the Euler’s constant. That

18,

F{ 1 (7=2(8e1)
(7 =2H(B+1)  {m6+(7 =P U B41F

(16)

The asymptotic variance (8) can then be

rewriften as
AsanBis) S B 012y =2 B Do 21 (1)

(17) is a quadratic function of z: and only
z, mvolves k. Therefore, the value of %
minimizing (I7) is

K= 31+ DA (18)

Example 3 :(continued) Suppose that o=
25.0, £=8.0, 5,720(kV) and there is no stress
upper bound, When censoring time % is given
as 10.0(hour), we used three-point equal-
interval search method to find optimum ramp
rate ¥ minimizing (15) and obtained &'=2.510
(kV/hour).

For the case without censoring, £ of (18)
is obtained as 1.407(kV/hour). This result is
the same as that of the case with a stress
bound. For some the other examples, we
obtained the same results. Thus, it appears that
a stress bound does not affect optimum ramp
rate when there is no time censoring. However,
we were unable to show that solution of the

equation A,=In(8) is equal to K~ of (18).
Appendix

{ 1} Likelihood Equations
The log likelihcod L for a single observation
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¢ is

L=u(){— ¢+ Blnlk) —cfne ° |
i) — a+ Blnls)—[cf T kel *} (A1)

_[1 _H|(f)_uz(f)){f|( T }+CJ( 7 )}8 ¢
The first partial derivatives of L with respect

"0 model parameters are

2L 20 = ul)] - Lrelbe " Jradt] — 1ol T el )

(A2)
(-l —ulcd Thefn)le”
2L 3 8 = u(Dflnlkt)— e e “(nlkr) =148+ 1))
{0 In(s =[G fins, e ) (A3)

__{l H: {Gﬁ‘f ll'l 5&)}

where G=¢,( 7 XIn(s,)— 1/ 8+1)). These ex-
pressions, when summed over all » items and
set equal to zero, arc the likelihood equations.
From (A2) and (A3), we can obtain the

following two equations

(B+Dnmd=e * |0 s 1A+ 1XQutm 1)~ rem) 7)), (A4)

( .8+ 1XH1h(k}+Q¢+ﬂglﬂ(.§h}}=
¢ (0040~ (Qlnn)sf 1(B+1) (AS5)

+iy 1[[(3&}[{ ﬁ"‘l Q:‘H'l] }? - ﬁ{ﬂg"’ﬂ_l) T ]I

We obtain from (A4) and (AS), after
eliminating @, an equation for £ in the form
of (6). Equation (5) is obtained from (Ad).

(i1} Fisher Information Matrix
The second partial derivatives are

'L aa’=—( 2l 2o )—ufD)~ull) (AG)

2L oa af=—(oL 3 fhutinlihulinG,) (AT

U 2f=-UB+1N) - (2L 28)
su (] —cfe * itk Anlkrd f+1))
~u{ e (s, Gtlle * —2In(s, ) B+1)) {
=(1=uli—wliel 7 in{s hGaod 7)) ™

AB)

where Go=ln(s,}+2ln(s, ) A+1).

We obtain the following identities through
integration by parts.

Ela(De oMl = —¢ " ol 2 Ml {1~ Eud T}
+ E[u PG+ 2B THT ) B+ 1),

(A9)

BudTle™ el = ~¢ " cd 101 ~FlalT—E T+ HudT). (AL10)

Using (A9), (A10) and the fact that E[ 2L/
aal=E[ 2Ll 2 8]0, we obtain

-fa'L 20%)= HuDEudT)

-H o 20 2 §]= — i)}~ ETH (A11)

-2 a8']= FludDIn(kT)n'(s, ETedT)].

Expectations in (All) are obtained as

follows.

E[Hl(T)]: rrl’i(zl)»
E[Hz(T)}z(l - 9!’ l(zl)) ¢ 1(23);
Flu(DInin)] = {29 2+ @£z 8+ Delnls BT (T)]

Ele(DGT = (2 ¢ (a0 2 ¢z &M B+1Y
+2In(s, )BT (Tn(kT)] — (s Ml 1],
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