• Title/Summary/Keyword: explosive blasting

Search Result 168, Processing Time 0.023 seconds

Experimental and Numerical Study on the Mitigation of High Explosive Blast using Shear Thickening based Shock-Absorbing Materials (전단농화유체기반의 충격완화물질을 이용한 고폭속 폭약의 폭발파 저감에 관한 실험 및 수치해석적 연구)

  • Younghun Ko
    • Explosives and Blasting
    • /
    • v.41 no.3
    • /
    • pp.1-12
    • /
    • 2023
  • A basic assessment of techniques to mitigate the risk of blast shock waves from proximity explosions was conducted. Common existing techniques include using mitigant materials to form barriers around the explosive or in the direction of propagation of the shock wave. Various explosive energy dissipation mechanisms have been proposed, and research on blast shock wave mitigation utilizing impedance differences has drawn considerable interest. In this study, shear thickening fluid (STF) was applied as a blast mitigation material to evaluate the effectiveness of STF mitigation material on explosion shock wave mitigation through explosion experiments and numerical analysis. As a result, the effectiveness of the STF mitigant material in reducing the explosion shock pressure was verified.

Study on the Precise Controlling of Fracture Plane in Smooth Blasting Method (SB발파에서 파단면 제어의 고도화에 관한 연구)

  • Cho, Sang-Ho;Jeong, Yun-Young;Kim, Kwang-Yum;Kaneko, Katsuhiko
    • Tunnel and Underground Space
    • /
    • v.19 no.4
    • /
    • pp.366-372
    • /
    • 2009
  • Recently, in order to achieve smooth fracture plane and minimize the excavation damage zone in rock blasting, controlled blasting methods which utilize new technologies such as electronic delay detonator (EDD) and a notched charge hole have been suggested. In this study, smooth blastings utilizing three wing type notched charge holes are simulated to investigate the influence of explosive initial density on the resultant fracture plane and damage zone using dynamic fracture process analysis (DFPA) code. Finally, based on the dynamic fracture process analyses, novel smooth blasting method, ED-Notch SB (Electronic Detonator Notched Charge Hole Smooth Blasting) is suggested.

Case Study of Explosive Demolition for a Structure in Urban Area (Explosive Demolition of Former Sung-Nam City Hall to Construct Sung-Nam City Hospital) (도심지 구조물 발파해체 적용사례 (성남시 의료원 건립을 위한 구성남시청사 발파해체))

  • Jung, Min-Su;Song, Young-Suk;Heo, Eui-Haeng;Kim, Hyo-Jin
    • Explosives and Blasting
    • /
    • v.30 no.1
    • /
    • pp.17-28
    • /
    • 2012
  • Building demolitions at urban area make some inconvenience to neighborhood through generating noises, ground vibrations, and dusts. For this reason, various methods to control such environmental impacts have been being designed and practiced. Among the methods, the use of explosive demolition is rapidly increasing because it can minimize the inconveniency as well as decrease the working time and cost. In this respect, the old Sung-Nam city hall, which was a Rahmen structure comprised of beams, slabs and columns, was decided to be demolished by explosive demolition. This paper shows that explosive demolition can be the most suitable way of removing old buildings eco-friendly, safely, and economically by showing the observation results obtained from the actual demolition operation for the Sung-Nam city hall.

Blast Design for Explosive Demolition of Concrete Foundation (기초콘크리트 구조물의 발파해체를 위한 발파설계)

  • Park, Hoon;Park, Hyoung-Ki;Suk, Chul-Gi;Yi, Young-Seop;Kaneko, Katsuhiko
    • Explosives and Blasting
    • /
    • v.30 no.1
    • /
    • pp.9-16
    • /
    • 2012
  • With the deterioration and functional loss of structures, there is an increasing demand for demolition and various demolition technologies have been developed. In case of a large-scale concrete foundation, application of some mechanical demolition techniques is limited because of the structural characteristics, and explosive demolition or explosive demolition combined with mechanical demolition is applied recently due to the effect to the surrounding environment by the ground vibration. In this study, we compared peak particle velocity of ground vibration depending on average fragment size in case of explosive demolition design for large-scale concrete foundation using the relation among specific charge, charge constant and transmitting medium constant as well as the relation between average concrete fragment size and specific charge.

Structural Analysis of the Pre-weakening of a Cylindrical Concrete Silo for the Application of Overturning Explosive Demolition Method (원통형 콘크리트 사일로의 발파해체 전도공법 적용을 위한 사전취약화 구조해석)

  • Choi, Hoon;Kim, Hyo-Jin;Park, Hoon;Yoon, Soon-Jong
    • Explosives and Blasting
    • /
    • v.27 no.2
    • /
    • pp.12-18
    • /
    • 2009
  • Recently, several cases of destruction of old cylindrical silos by explosive demolition method have been reported. This study deals with the subject concerning the pre-weakening of a cylindrical concrete silo for the application of overturning explosive demolition method. In the past, the pre-weakening operation of structure in explosive demolition has been done by use of some empirical methods. These empirical approaches, however, have possibilities of unexpected accidents. In order to provide a guideline for the pre-weakening of cylindrical silos and similar structures, this paper shows the result of a case study, in which the instability of a silo due to pre-weakening is investigated by a numerical structural analysis before actually conducting pre-weakening and demolition operations.

Case Study on the Explosive Demolition of the KOGAS Office Building in Bundang District (한국가스공사 분당사옥 발파해체 시공사례)

  • Kim, Sang-min;Park, Keun-sun;Son, Byung-min;Kim, Ho-jun;Kim, Hee-do;Kim, Gab-soo
    • Explosives and Blasting
    • /
    • v.36 no.4
    • /
    • pp.48-61
    • /
    • 2018
  • This case study is concerned with the project of the explosive demolition for the KOGAS office building located in Bundang district in Seongnam city. Since the office building was a kind of long-span beam structures, a mechanical demolition method using jacking support systems was considered in the beginning of the project. With consideration of the excessive reinforcement cost, uncertainty of safety, and prolonged construction period, however, the original plan was later changed to use an explosive demolition method. For the purpose of protecting nearby buildings and facilities during the collapse process, the explosive initiation sequence was elaborately designed to bring down the building structure towards its front left corner. A total of over 550 electronic detonators (Unitronic 600) was used to sequentially initiate the explosives installed at appropriate columns in the first, second, and fifth floors. To diminish dust production, water bags of small and large sizes were respectively installed at each column and on the floors to be blasted. As such, every effort was exercised to mitigate overall noise, dust, and shock vibrations that could be generated during the explosive demolition process for the office building.

Probabilistic estimation of fully coupled blasting pressure transmitted to rock mass II - Estimation of rise time - (암반에 전달된 밀장전 발파입력의 획률론적 예측 II - 최대압력 도달시간 예측을 중심으로 -)

  • Park, Bong-Ki;Lee, In-Mo;Kim, Sang-Gyun;Lee, Sang-Don;Cho, Kook-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.1
    • /
    • pp.25-40
    • /
    • 2004
  • The supersonic shock wave generated by fully coupled explosion will change into subsonic shock wave, plastic wave, and elastic wave consecutively as the wave propagates through rock mass. While the estimation of the blast-induced peak pressure was the main aim of the companion paper, this paper will concentrate on the estimation of the rise time of blast-induced pressure. The rise time can be expressed as a function of explosive density, isentropic exponent, detonation velocity, exponential coefficient of the peak pressure attenuation, dynamic yield stress, plastic wave velocity, elastic wave velocity, rock density, Hugoniot parameters, etc. Parametric analysis was performed to pinpoint the most influential parameter that affects the rise time and it was found that rock properties are more sensitive than explosive properties. The probabilistic distribution of the rise time is evaluated by the Rosenblueth'S point estimate method from the probabilistic distributions of explosive properties and rock properties. Numerical analysis was performed to figure out the effect of rock properties and explosive properties on the uncertainty of blast-induced vibration. Uncertainty analysis showed that uncertainty of rock properties constitutes the main portion of blast-induced vibration uncertainty rather than that of explosive properties. Numerical analysis also showed that the loading rate, which is the ratio of the peak blasting pressure to the rise time, is the main influential factor on blast-induced vibration. The loading rate is again more influenced by rock properties than by explosive properties.

  • PDF

Variations of the Pollutant Concentration by Explosive Demolition of a Building and Management Plan of Non-point Source Pollution (구조물의 해체 공정별 오염농도 변화 및 비점오염원 관리 방안)

  • Chu, Kyoung-Hoon;Yoo, Sung-Soo;Kim, Hyo-Jin;Lee, Kyoung-Hee;Ko, Kwang-Baik
    • Explosives and Blasting
    • /
    • v.29 no.1
    • /
    • pp.17-26
    • /
    • 2011
  • In this study, the pollutants contained in water and soil samples taken from the explosive demolition site were examined to investigate the effects on environment, and management plan of non-point source pollution in the demolition site was suggested through characterizing the movement of the pollutant with time. As results, pH value of the water and soil samples after the demolition work was 8.5~9.3 which exceeds the Korean environmental criterion of water and soil range due to calcium hydroxide compounds in the concrete. The concentration level of heavy metals caused by the explosive demolition doesn't exceed the environmental criterion of water and soil doesn't exceed the environmental criterion of water and soil quality, and the influence of water and soil pollution on the environment was not considered. The concentration of the heavy metals was analyzed and that of Cr, Cu, Zn and Hg among the heavy metals increased after the drilling and explosive demolition. This says that concentration of the heavy metals during explosive demolition works needs to be monitored. The most pollutants with time or rain dilution into the demolition site decreased and this means that the pollutants caused by the explosive demolition might have influenced to vicinity of the demolition sites as non-point pollution.

Numerical Analysis on Effect of Stemming Condition in Mine Ventilation Shaft Blasting (광산 통기수갱발파에서 전색조건이 발파효율에 미치는 영향에 관한 수치해석적 연구)

  • Kim, Jun-ha;Kim, Jung-gyu;Jung, Seung-won;Ko, Young-hun;Baluch, Khaqan;Kim, Jong-gwan
    • Explosives and Blasting
    • /
    • v.39 no.3
    • /
    • pp.15-23
    • /
    • 2021
  • Ventilation shafts are pathways in mines and tunnels for the removal of dust or smoke during underground space construction and operation. In mines, blasting with long blast holes is preferred for the excavation of a ventilation shaft in the 10~20m long crown pillar section. In this case, the bottom part of the blast hole is completely drilled in order to determine the drilling error, and this causes a problem of lowering the explosive charge and blasting efficiency. It is possible to solve the problem of explosive loading and to increase the blast efficiency by covering the curb of the blasthole by using stemming material. In this study, simulations for the blasting of a ventilation shaft were performed with various stemming lengths and the blasthole diameters(45, 76mm) using AUTODYN 2D SPH(Smooth particle hydrodynamics) analysis technique. Also the optimal bottom stemming column was derived by checking the size of the boulder and burden line according to blasting. Analysis result, blasting efficiency is lessened in case of stemming length less than 30cm and the optimal length of the stemming material should be 30cm or higher to achieve high efficiency of blasting.

Case Study on the Explosive Demolition of DCRE Incheon Plant (디씨알이 인천공장 발파해체 시공사례)

  • Kim, Sang-Min;Park, Keun-Sun;Kim, Ho-Jun;Kim, Hee-Do;Kim, Gab-Soo;An, Kyung-Ro
    • Explosives and Blasting
    • /
    • v.37 no.1
    • /
    • pp.34-47
    • /
    • 2019
  • This case study is concerned with the project of the explosive demolition for the DCRE Incheon plant located in Hakik district in Incheon city. The building was severely aging due to the high temperature and sea winds of hundreds of degrees emitted by chimney-shaped steel structures inside the building. Due to this, the concrete of the column and the beam fell off and rusted rebar were exposed, and some of the slabs were severely damaged, making it difficult for workers to access the structure. Therefore, it is not possible to apply a mechanical demolition method in which heavy equipment enters the interior of the building, and an explosive demolition method was applied to allow the building to be demolished without dismantling the internal facilities of the building. The order of blasting proceeded in the order of (1) building ${\rightarrow}$ (2) chimney 2 ${\rightarrow}$ (3) chimney 1. A total of 406 electronic detonators (Unitronic 600) was used to sequentially initiate the explosives installed at appropriate in building and chimneys.