• Title/Summary/Keyword: explosion accident

Search Result 338, Processing Time 0.02 seconds

The Consequence Analysis for Unconfined Vapor Cloud Explosion Accident by the Continuous Release of Gas-Liquid Flow (기-액흐름 연속누출에 의한 개방공간 증기운 폭발사고의 영향평가)

  • 장서일;이헌창;김태옥
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.3
    • /
    • pp.35-43
    • /
    • 2002
  • For the unconfined vapor cloud explosion accident by the continuous release of gas-liquid flow of various saturated liquids in a vessel at ground level, overpressures were estimated and analyzed with various release conditions and materials by TNT equivalency model with vapor dispersion. We found that at same release conditions, overpressure showed n-heptane > xylene > n-hexane > toluene > n-heptane > benzene, respectively and that overpressure was increased with increasing the hole diameter and the storage pressure, but it was increased with decreasing the wind speed, the interested distance, and the vessel thickness.

An Assessment of Reactor Vessel Integrity Under In-Vessel Vapor Explosion Loads

  • Bang, Kwang-Hyun;Cho, Jong-Rae;Park, Soo-Yong
    • Nuclear Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.299-308
    • /
    • 2000
  • A safety assessment of reactor vessel lower head integrity under in-vessel vapor explosion loads has been performed. The core melt relocation parameters were chosen within the ranges of physically realizable bounds. The premixing and explosion calculations were performed using TRACER-II code. Using the calculated explosion pressures imposed on the lower head inner wall, strain calculations were peformed using ANSYS code. Then, the calculated strain results and the established failure criteria were used in determining the failure probability of the lower head, In the explosion analyses, it is shown that the explosion impulses are not altered significantly by the uncertain parameters of triggering location and time, fuel and vapor volume fractions in uniform premixture bounding calculations. Strain analyses show that the vapor explosion-induced lower head failure is not possible under the present framework of assessment. The result of static analysis using the conservative explosion-end pressure of 50 MPa also supports the conclusion. It is recommended, however, that an assessment of fracture mechanics for preexisting cracks be also considered to obtain a more concrete conclusion.

  • PDF

The Effect of the Change of Wind Velocity on the Classification of Explosion Hazardous Area (폭발위험장소 선정 시 풍속 변화에 관한 연구)

  • Kwon, Yong-Joong;Kim, Dong-Joon
    • Korean Journal of Hazardous Materials
    • /
    • v.6 no.2
    • /
    • pp.62-67
    • /
    • 2018
  • It is very important to classify explosion hazardous area in order to prevent an accident explosion. In order to prevent such a explosion, the Industrial Safety and Health Standards Rules stipulates the establishment and management of explosion hazards in accordance with the criteria set by the Korean Industrial Standards. This study has investigated the range of the explosion hazardous area according to various hole sizes, pressures, vapor densities, and wind velocities in the outdoor flammable liquid tank using KS C IEC-60079-10-1 $2^{nd}$ Ed.(=IEC CODE) and PHAST. The results show that the explosion hazardous areas by IEC CODE have circle shapes. However, the areas by PHAST show ellipse shapes. The different of the explosion hazardous areas increases with the increase of wind velocity.

A Study on Safety Management Development Plan of Domestic City Gas Facility (국내 도시가스 시설의 안전관리 발전방안에 관한 연구)

  • 정원익;양광모;강경식
    • Journal of the Korea Safety Management & Science
    • /
    • v.6 no.2
    • /
    • pp.23-33
    • /
    • 2004
  • Domestic city gas is supplying in an about 10 million household on present 34 city gas companies because is begun to supply regularly after two 1980 years middle. But, result that focus on city gas supply spread and stable supply for supply area and neglects about safety problem, hundreds casualties such as Ahyun explosion accident and Deagu city gas explosion accident were reached in situation that occurred large size calamity occurs it is dizzliness. In the case of advanced nation, can see that accomplish system and progress that in technology after experience major accident. Therefore, grasp problem investigating safety actual conditions for city gas institution and study about solvable plan is required this. Also, must guide reform and level elevation of a domestic company safety technology through induction and development of safety technology that is suitable in supply, domestic real condition etc. Must help in power positivity that is full text executing high-quality safety education about step High firing mechanism safety technology than present safety education.

Gas Explosion Hazard Analysis in Domestic (가정집에서 가스폭발 위험성 분석)

  • Jo Young-Do;Kim Ji-Yun;Kim Sang-sub
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.2 s.14
    • /
    • pp.36-42
    • /
    • 2001
  • A leak of fuel gas in partially confined area creates a flammable atmosphere and give rise to an explosion, which is one of the most common accident in domestic. Observations from accident in domestic suggest that some explosions are caused by a quantify of fuel significantly less than lower explosion limit(LEL) amount required to fill the room, which is attributed to inhomogeneous mixing of leaked gas. The minimum amount of leaked gas for explosion is highly dependent on the mixing degree in the area. For lighter gas, such as methane, a high concentration tends to build up in the space from ceiling of room. But heavy gas, such as propane, a high concentration tends to build up in the space from bottom of room. This paper presents a method for analysing the explosion hazard in a room with very small amount of leaked gas. Based on explosion limit concentration, the gaussian distribution model is used to estimate the minimum amount of leak which yields a specified explosion pressure. The results demonstrate that catastrophic structural damage can be achieved with a volume of fuel gas which is less than 0.5 percent of the total enclosed volume in domestic. The method will help analyzing hazard to develop new safe device as well as investigating accident.

  • PDF

A Study on the Prediction of City Gas Accident Damage by Consequence Analysis (Consequence Analysis를 통한 도시가스 사고 피해 예측에 관한 연구)

  • An, Jung-sik;Kim, Jihye;Yu, Jihoon;Kim, Jongkyoung;Kang, Subi;Cho, Donghyun
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.4
    • /
    • pp.36-40
    • /
    • 2022
  • Recently, the biggest topic in the industry is the area of industrial safety and health management. Since city gas is flammable gas and has a high risk of fire and explosion, much effort is required to prevent serious industrial and citizenry disasters. As part of city gas safety management, this study attempted to quantitatively predict the scope and degree of damage in the event of an explosion accident caused by city gas leakage through the Consequence Analysis. As a result, there was a difference in the accident result value according to various leakage conditions such as pressure and weather conditions. Through this study, a scenario of explosion due to city gas leakage will be prepared when performing city gas safety management work and used to prepare more effective accident prevention and emergency action plans.

Analysis of Research Trends of Explosion Accidents Using Co-Occurrence Keyword Analysis (동시출현 핵심단어 분석을 활용한 폭발사고 연구 동향 분석)

  • Youngwoo Lee;Minju Kim;Jeewon Lee;Wusung An;Sangki, Kwon
    • Explosives and Blasting
    • /
    • v.42 no.2
    • /
    • pp.12-28
    • /
    • 2024
  • Explosion involving rapid energy diffusion are causing enormous human and economic damage. Due to the advancement of the industry, various and widespread explosion accidents are occurring worldwise, and to prevent such explosion accidents, accurate cause analysis should be the basis. Research analysis related to worldwise explosion accidents was carried out in a limited range for some accidents. By conducting bibliometric analysis of keywords on all the papers published in international journals, this study attempted to derive the overall research trend by period and the latest fields in which future researchers may be interested. As a result of the study of keywords, the number of papers was generally small and the number of overall key words was small from 2005 to 2014, but numerical simulation and artificial intelligence have been used for the analysis of explosion accident cases since 2015, and various studies such as lithium-ion battery and mixed gas, which are the latest research fields, are currently being actively conducted.

An Evaluation of the Fire and Explosion Effect by BTX released in a Chemical Plant (화학공장에서의 BTX누출에 의한 화재$\cdot$폭발 영향 평가)

  • Park Ki-Chang;Kim Byung-Jick
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.3 s.11
    • /
    • pp.9-18
    • /
    • 2000
  • Accident analysis are useful in the design stage of chemical plants and their surrounding structures. Also, analysis results are required for safety management of existing plants. In this paper, the fire and explosion effect by BTX released was evaluated. The computer program was prepared for accident analysis and adopted for evaluating the magnitude of fire (pool fire) and explosion (UVCE) effect. The thermal radiation was used as a measure of fire magnitude and the overpressure as a measure of explosion magnitude. And probit analysis was made for each case. As a case study, benzene tank model was used. The simulation results of explosion of benzene showed that the damage within 20 meters from the accident spot was severe and the damage beyond 60 meters was negligible. The simulation results of fire of benzene showed that the damage in summer is bigger than that in winter. And the damage of city located inland seems to be bigger than that of city in seaside. And thermal radiation effects was negligible beyond 40 meters-distance from the accident spot.

  • PDF

The Characteristics of the Fatal Accidents Caused by Fire, Explosion and Asphyxiation during Welding and Flame Cutting in the Manufacturing Industry (제조업에서의 용접·용단 작업 중 화재·폭발·질식 사망사고 특성)

  • Seo, Dong-Hyun;Han, Ou-Sup;Lee, Keun-Won
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.3
    • /
    • pp.21-27
    • /
    • 2019
  • Many accidents have been occurring during welding and flame cutting work related to maintenance and repair as the domestic manufacturing facilities gradually become decrepit. However, it is not easy to find the accurate statistics and analysis data on accidents occurring during welding or flame cutting operations related to maintenance and repair of machinery and equipment. Therefore, in this study, the fatal accident cases of fire/explosion and asphyxiation that occurred during the welding and flame cutting work in the manufacturing industry were collected and their characteristics were analyzed. Then, we tried to find the connection of the accidents according to the machinery/equipment and the work content, and to provide the materials and measures that can be used to prevent the similar accidents. We collected 329 cases of the fatal accidents related to fire/explosion and leakage/contact of chemical substances in the domestic manufacturing industry during the last 10 years (2008 ~ 2017). Among them, 72 accidents occurred during welding or flame cutting were extracted and the related reports were investigated whether they occurred during usual work or unusual work. Also, the machinery/equipment and the work content related to the accidents were classified and analyzed based on the criteria. The analysis results showed that 31 cases of the fire/explosion accidents occurred during usual work and 32 cases during unusual work, and it was found that 9 cases of asphyxiation death occurred during usual work. Then, from the analysis results, the connections of the machinery/equipment and the work contents related to the accidents were schematized into a accident tree.

A Study on the Failure Characteristic of Excavation Puddle by LPG Explosion using AUTODYN (LPG 폭발로 인한 건설현장 굴착웅덩이의 구조물 파손 특성에 관한 연구)

  • Kim, Eui Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.5
    • /
    • pp.58-65
    • /
    • 2022
  • Gas explosion accidents could cause a catastrophe. we need specialized and systematic accident investigation techniques to shed light on the cause and prevent similar accidents. In this study, we had performed LPG explosion simulation using AUTODYN which is the commercial explosion program and predicted the damage characteristics of the structures by LNG explosive power. In the first step, we could get LPG's physical and chemical explosion properties by calculation using TNT equivalency method. And then, by applying TNT equivalency value about the explosion limit concentration of LPG on the 2D-AUTODYN simulation, we could get the explosion pressure wave profiles (explosion pressure, explosion velocity, etc.). In the last step, we performed LPG explosion simulation by applying to the explosion pressure wave profiles as the input data on the 3D-AUTODYN simulation. As a result, we had performed analyzing of the explosion characteristics of LPG in accordance with concentration through the 3D-AUTODYN simulation in terms of the explosion pressure behavior and structure destruction and damage behavior. The analyses showed that the generated stresses of the structures were lower than the compressive strengths in cases 1(two lane) and 2(four lane), while the generated stress in case 3(six lane) was 8.68e3 kPa, which exceeded the compressive strength of 5.89e3 kPa.