• Title/Summary/Keyword: exploration robot

Search Result 98, Processing Time 0.034 seconds

Analysis of Educational Content Cases and Exploration of Utilization Plans (교육콘텐츠 사례 분석 및 활용 방안 탐색)

  • Yang, Ji-Won;Lee, Hyeong-Ok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.739-741
    • /
    • 2022
  • 개인교수형, 반복학습형, 학습용 게임형, 시뮬레이션형 프로그램등의 교육콘텐츠등의 우수사례인 장애인식교육 이러닝센터와 Simcity 시리즈를 교육 목적, 교육 대상, 관련 교과목, 전달 매체, 전체 분량, 프로그램 및 학습 내용의 구조를 바탕으로 분석하여 교육 자료가 필요한 교수자들이 활용할 수 있는 방안을 모색하였다.

Haptics for Human-Machine Interaction at The Johns Hopkins University

  • Okamura, Allison M.;Chang, Sung-Ouk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2676-2681
    • /
    • 2003
  • The Haptic Exploration Laboratory at The Johns Hopkins University is currently exploring many problems related to haptics (force and tactile information) in human-machine systems. We divide our work into two main areas: virtual environments and robot-assisted manipulation systems. Our interest in virtual environments focuses on reality-based modeling, in which measurements of the static and dynamic properties of actual objects are taken in order to produce realistic virtual environments. Thus, we must develop methods for acquiring data from real objects and populating pre-defined models. We also seek to create systems that can provide active manipulation assistance to the operator through haptic, visual, and audio cues. These systems may be teleoperated systems, which allow human users to operate in environments that would normally be inaccessible due to hazards, distance, or scale. Alternatively, cooperative manipulation systems allow a user and a robot to share a tool, allowing the user to guide or override the robot directly if necessary. Haptics in human-machine systems can have many applications, such as undersea and space operations, training for pilots and surgeons, and manufacturing. We focus much of our work on medical applications.

  • PDF

A Study on the Development of Underwater Robot Control System for Autonomous Grasping (자율 파지를 위한 수중 로봇 제어 시스템 구축에 관한 연구)

  • Lee, Yoongeon;Lee, Yeongjun;Chae, Junbo;Choi, Hyun-Taek;Yeu, Taekyeong
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.1
    • /
    • pp.39-47
    • /
    • 2020
  • This paper presents a control and operation system for a remotely operated vehicle (ROV). The ROV used in the study was equipped with a manipulator and is being developed for underwater exploration and autonomous underwater working. Precision position and attitude control ability is essential for underwater operation using a manipulator. For propulsion, the ROV is equipped with eight thrusters, the number of those are more than six degrees-of-freedom. Four of them are in charge of surge, sway, and yaw motion, and the other four are responsible for heave, roll, and pitch motion. Therefore, it is more efficient to integrate the management of the thrusters rather than control them individually. In this paper, a thrust allocation method for thruster management is presented, and the design of a feedback controller using sensor data is described. The software for the ROV operation consists of a robot operating system that can efficiently process data between multiple hardware platforms. Through experimental analysis, the validity of the control system performance was verified.

Robotics in Construction: State-of-Art of On-site Advanced Devices

  • Balzan, Alberto;Aparicio, Claudia Cabrera;Trabucco, Dario
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.1
    • /
    • pp.95-104
    • /
    • 2020
  • Recently, robotic technologies have significantly improved, bringing considerable enhancements in many sectors; the main objective of this paper is to figure out if these innovations have also involved the building industry. To achieve this purpose, it has been considered crucial to first reshape and clarify some concepts, incorporating a much more flexible understanding of the term "robot", as well as the formulation of its future potential. Subsequently, it has been carried out an analysis of the various advanced devices that are currently available to be employed in the construction processes; the review includes a thorough classification of construction robots, divided into 18 families reflecting their purpose of use, and a dissection based on the term used to define them. The attention has been focused on the most updated and recent robots and, in their absence, on the most advanced machines prevailing. This operation has been achieved taking into account the development history of construction robots, as well as the analyses and classifications previously conducted, reconsidering them according to the just mentioned reflections. Furthermore, an in-depth exploration of the exoskeletons, as well as on a sophisticated robot recently developed by Schindler Group has been executed.

Finite Element Analysis of Carbon Fiber Reinforced Plastic Frame for Multi-legged Subsea Robot (다관절 복합이동 해저로봇을 위한 탄소섬유 복합소재 프레임의 구조 해석)

  • Yoo, Seong-Yeol;Jun, Bong-Huan;Shim, Hyungwon;Lee, Pan-Mook
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.65-72
    • /
    • 2013
  • This paper describes a finite element analysis (FEA) of the body frame of a subsea robot, Crabster200 (CR200). CR200 has six legs for mobility instead of screw type propellers, which distinguishes it from previous underwater robots such as remotely operated vehicles (ROVs) and autonomous underwater vehicles (AUVs). Another distinguishing characteristic is the body frame, which is made of carbon fiber reinforced plastic (CFRP). This body frame is designed as a rib cage structure in order to disperse the applied external loads and reduce the weight. The frame should be strong enough to support many devices for exploration and operation underwater. For a reasonable FEA, we carried out specimen tests. Using the obtained material properties, we performed a modal analysis and FEA for CR200 with a ready posture. Finally, this paper presents the FEA results for the CFRP body frame and the compares the characteristics of CFRP with conventional material, aluminum.

Path Following Performance of Pure Pursuit Algorithm-Based Mobile Robot (Pure pursuit 알고리즘 기반 모바일 로봇의 경로 추종 성능 분석)

  • Yang, Seung Geon;Lee, Juyoung;Kim, Hyeonsoo;Lim, Seung-Chan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.532-535
    • /
    • 2022
  • Path following algorithms have been intensively studied for various mobile platforms such as planetary exploration, unmanned delivery, and autonomous driving. However, ensuring high accuracy in practical applications is challenging due to enormous uncertainty inherent in real environment. In this paper, we aim to reveal the guideline for the design and implementation by investigating the path following performance of mobile robot controlled by the pure pursuit algorithm. To this end, we evaluate the accuracy of the pure pursuit algorithm when tuning the look ahead distance and deploying erroneous actuator.

  • PDF

A study on the Development of Fusion Education Attempting to Utilize 3D Printing for the Fabrication and Control of Robot Arms (3D 프린터를 활용한 로봇 팔의 제작과 제어를 위해 시도한 융합 교육의 발전 방안 연구)

  • Eum-young Chang;Hyung-jin Yu
    • Journal of Practical Engineering Education
    • /
    • v.16 no.2
    • /
    • pp.121-128
    • /
    • 2024
  • This study introduces specializer high school students , as a fusion education method using Inventor software to design a robot arm, which is then 3D printed and controlled by an Arduino microcontroller. Students gain practical experience and have the opportunity to integrate knowledge and skills from various academic fields. They start by designing in CAD software, proceed to fabricate actual robot arm components using 3D printing technology, and finally program and control the assembled robot arm. This interdisciplinary education enhances students' problem-solving abilities, fosters creativity, and increases their motivation to learn. To implement such educational endeavors in actual curricula, ongoing teacher support and appropriate resources are essential. This research serves as a foundational exploration of the applicability of fusion education in future learning contexts.

Study on a Suspension of a Planetary Exploration Rover to Improve Driving Performance During Overcoming Obstacles

  • Eom, We-Sub;Kim, Youn-Kyu;Lee, Joo-Hee;Choi, Gi-Hyuk;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.4
    • /
    • pp.381-387
    • /
    • 2012
  • The planetary exploration rover executes various missions after moving to the target point in an unknown environment in the shortest distance. Such missions include the researches for geological and climatic conditions as well as the existence of water or living creatures. If there is any obstacle on the way, it is detected by such sensors as ultrasonic sensor, infrared light sensor, stereo vision, and laser ranger finder. After the obtained data is transferred to the main controller of the rover, decisions can be made to either overcome or avoid the obstacle on the way based on the operating algorithm of the rover. All the planetary exploration rovers which have been developed until now receive the information of the height or width of the obstacle from such sensors before analyzing it in order to find out whether it is possible to overcome the obstacle or not. If it is decided to be better to overcome the obstacle in terms of the operating safety and the electric consumption of the rover, it is generally made to overcome it. Therefore, for the purpose of carrying out the planetary exploration task, it is necessary to design the proper suspension system of the rover which enables it to safely overcome any obstacle on the way on the surface in any unknown environment. This study focuses on the design of the new double 4-bar linkage type of suspension system applied to the Korea Aerospace Research Institute rover (a tentatively name) that is currently in the process of development by our institute in order to develop the planetary exploration rover which absolutely requires the capacity of overcoming any obstacle. Throughout this study, the negative moment which harms the capacity of the rover for overcoming an obstacle was induced through the dynamical modeling process for the rocker-bogie applied to the Mars exploration rover of the US and the improved version of rocker-bogie as well as the suggested double 4-bar linkage type of suspension system. Also, based on the height of the obstacle, a simulation was carried out for the negative moment of the suspension system before the excellence of the suspension system suggested through the comparison of responding characteristics was proved.

Development of Educational Program for Cultivating of Intergrative Thinking Person : Centering on Robot, New Materials, Space Exploration (고등학생을 위한 융합인재교육 프로그램 개발: 로봇, 신소재, 우주 탐사를 중심으로)

  • Choi, Yu Hyun;Lim, Yun Jin;Noh, Jun Ho
    • 대한공업교육학회지
    • /
    • v.38 no.1
    • /
    • pp.195-219
    • /
    • 2013
  • The purpose of this study was to develop a Educational programs for cultivating of intergrative thinking person. For the study, various literature researches were reviewed intensively about STEAM, STEM, robot, new materials, space exploration. As the process of the Study, the strategy for educational program development, workbook for students and instructional Guide for teacher were developed. The workbooks and instructional guides were tested by pilot test. And the interviews with students and teachers were feedback. The result of the feedback, the programs for the 10 educational Programs for cultivating of intergrative thinking person were developed. Based upon the conclusion of this study, the theoretical rationale of educational program for cultivating of intergrative thinking person was presented. Finally, the application method of this study and subsequent studies for effectiveness vertification were proposed.

Sensor-Based Path Planning for Planar Two-identical-Link Robots by Generalized Voronoi Graph (일반화된 보로노이 그래프를 이용한 동일 두 링크 로봇의 센서 기반 경로계획)

  • Shao, Ming-Lei;Shin, Kyoo-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.6986-6992
    • /
    • 2014
  • The generalized Voronoi graph (GVG) is a topological map of a constrained environment. This is defined in terms of workspace distance measurements using only sensor-provided information, with a robot having a maximum distance from obstacles, and is the optimum for exploration and obstacle avoidance. This is the safest path for the robot, and is very significant when studying the GVG edges of highly articulated robots. In previous work, the point-GVG edge and Rod-GVG were built with point robot and rod robot using sensor-based control. An attempt was made to use a higher degree of freedom robot to build GVG edges. This paper presents GVG-based a new local roadmap for the two-link robot in the constrained two-dimensional environment. This new local roadmap is called the two-identical-link generalized Voronoi graph (L2-GVG). This is used to explore an unknown planar workspace and build a local roadmap in an unknown configuration space $R^2{\times}T^2$ for a planar two-identical-link robot. The two-identical-link GVG also can be constructed using only sensor-provided information. These results show the more complex properties of two-link-GVG, which are very different from point-GVG and rod-GVG. Furthermore, this approach draws on the experience of other highly articulated robots.