• Title/Summary/Keyword: explicit storage structures

Search Result 2, Processing Time 0.02 seconds

Minimum Deficiency Ordering with the Clique Storage Structure (클릭저장구조에서 최소 부족수 순서화의 효율화)

  • Seol, Tong-Ryeol;Park, Chan-Kyoo;Park, Soon-Dal
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.3
    • /
    • pp.407-416
    • /
    • 1998
  • For fast Cholesky factorization, it is most important to reduce the number of nonzero elements by ordering methods. Generally, the minimum deficiency ordering produces less nonzero elements, but it is very slow. We propose an efficient implementation method. The minimum deficiency ordering requires much computations related to adjacent nodes. But, we reduce those computations by using indistinguishable nodes, the clique storage structures, and the explicit storage structures to compute deficiencies.

  • PDF

Large displacement analysis of inelastic frame structures by convected material frame approach

  • Chiou, Yaw-Jeng;Wang, Yeon-Kang;Hsiao, Pang-An;Chen, Yi-Lung
    • Structural Engineering and Mechanics
    • /
    • v.13 no.2
    • /
    • pp.135-154
    • /
    • 2002
  • This paper presents the convected material frame approach to study the nonlinear behavior of inelastic frame structures. The convected material frame approach is a modification of the co-rotational approximation by incorporating an adaptive convected material frame in the basic definition of the displacement vector and strain tensor. In the formulation, each discrete element is associated with a local coordinate system that rotates and translates with the element. For each load increment, the corresponding strain-displacement and nodal force-stress relationships are defined in the updated local coordinates, and based on the updated element geometry. The rigid body motion and deformation displacements are decoupled for each increment. This modified approach incorporates the geometrical nonlinearities through the continuous updating of the material frame geometry. A generalized nonlinear function is used to derive the inelastic constitutive relation and the kinematic hardening is considered. The equation of motion is integrated by an explicit procedure and it involves only vector assemblage and vector storage in the analysis by assuming a lumped mass matrix of diagonal form. Several numerical examples are demonstrated in close agreement with the solutions obtained by the ANSYS code. Numerical studies show that the proposed approach is capable of investigating large deflection of inelastic planar structures and providing an excellent numerical performance.