An expert system to design compressor valve systems has been developed. Design process is viewed as a chain of devisions based on the results of necessary analyses. Actual design is implemented by the interaction between the expert system and the user. In this work, it is demonstrated how a final design is achieved by utilizing the rule bases and analysis capability of the system. The structure of the rule bases and related parameter studies are also explained. Advantages of using an expert system approach for valve designs are explained using a practical example.
This study aimed to provide empirical evidence about expert performance approach in aviation field and the results suggested that the amount of experience(e.g. total flight hour) is necessary but not sufficient index of a pilot's expertise or superior performance. 43 pilots participated and completed a spatial span task and SA (situation awareness) tasks. To explore the factors predicting the performance in routine and non-routine situations, discriminant analysis was conducted. The results of discriminant analysis indicated that different variables are related with the performance in routine and non-routine situation. The factors predicting performance in routine situation were the spatial span scores and total flight hours. On the other hand, the factors predicting performance in non-routine situation were age and the qualification for instrument flying. In real world, total flight time which represents the quantity of experience has been frequently used to predict flight abilities and as an important index of expertise. The results of this study suggest that these kinds of factors have to be used cautiously to predict the performance in abnormal situation.
Decision support system (DSS) has been expected to be a powerful tool for aiding the decision making processes in business organizations. But it's contribution has turned to be somewhat doubtful, In this paper, an intergrated systems design apporach is suggested, which integrates DSS and expert system (ES) for the enhancement of performance of DSS, after carefully reviewing both DSS and ES.
Attention has been focused recently on the concept of shared cognition which encompasses the notion that effective team members hold knowledge that is overlapping and complementary with teammates. This shared cognition is expected to improve team effectiveness. In contrast to the continued efforts in developing theoretical approach of shared cognition, empirical studies are meager. Thus, we conducted an empirical study to investigate the role of shared cognition on team effectiveness. This study classifies shared cognition into two types, team mental model and transactive memory system, by shared meaning. A total of 121 new product development teams in the IT industry were surveyed for the data collection. The results of analysis can be summarized as follows: first, team mental model has a positive influence on team performance, team innovative behavior and team learning effect. And the relation with team mental model and team performance is moderated by the similarity of knowledge structure among the expert. Second, transactive memory system has a positive influence on team performance, team innovative behavior and team learning effect.
Fuzzy Min-Max Neural Network(FMMNN) is a powerful classifier, It has, however, some problems. Learning result depends on the presentation order of input data and the training parameter that limits the size of hyperbox. The latter problem affects the result seriously. In this paper, the new approach to alleviate that without loss of on-line learning ability is proposed. The committee machine is used to achieve the multi-resolution FMMNN. Each expert is a FMMNN with fixed training parameter. The advantages of small and large training parameters are used at the same time. The parameters are selected by performance and independence measures. The Decision of each expert is guided by the gating network. Therefore the regional and parametric divide and conquer scheme are used. Simulation shows that the proposed method has better classification performance.
Setup planning for machining processes is a part of fixture planning which is also a part of process planning. A setup of a part is defined as a group of features which are machined while the part is fixtured in one single fixture. Setup planning includes a number of tasks such as the selection of setup, sequence of setups and datum frame for each setup. Setup planning is an important function in fixture planning which must be able to support and to clamp a workpiece to prevent deflections caused by machining and clamping loads. This paper presents setup planning system using expert system approach(SPES) for prismatic parts which can be machined on vertical milling machine. SPES consists of preprocessing module and main processing module. Preprocessing module executes the conversion of feature data to frame type data and the determination of setups, and main processing module executes the determination of datum frame of each setup and sequance of setups. Preprocessing module is coded by C language and main processing module is a rule-based expert system using EXSYS pro. The performance of SPES is evaluated through case studies and the results show successful work except for operation sequence of machining holes. This is due to the limited rules for machining holes.
본 논문은 자유학기제 진로탐색을 위한 기초 자료 제공의 차원에서 시행되었다. 진로교육의 목적을 전문가 양성에 두고 전문가 수행 요건에 대한 선행 연구 결과들을 기초로 진로탐색을 위한 구체적인 접근 방법을 도출하려 하였으나 전문가 수행 요건에 대한 논쟁들이 해결이 되지 않고 있는 상황이어서 전문성 핵심 요소들을 인간의 다양한 인지 현상들이 형성되어 나오는 근원적 인지 메커니즘을 통해 전체적으로 확인하였다. 그 결과 전문가 영역은 내용 전문성과 표현 전문성으로 구분되는데 내용과 표현이 다양한 통합 비율로 결합되어 있는 전문성과 내용이나 표현이 독립적으로 구성된 전문성으로 다시 다양하게 구분되며, 각 영역에 따라 전문가 수행에 요구되는 조건들이 다양하다. 한편 분야 최고 전문가는 지능, 내적사고, 호기심, 집착력 등의 수준이 특정 전문성이 요구하는 수준과 일치될 때 탄생할 수 있고, 특히 집착력이 결정적 역할을 하는 것으로 나타났다. 본 논문은 이런 결과를 바탕으로 전문성과 관련된 쟁점들에 대해 논의하고 자유학기제 진로 탐색을 위한 구체적인 접근법을 제공하고 있다.
Human experts have the various own knowledges to be applied in specialized domains. The fact that knowledge itself becomes more critical in the context of textile knowledge with rapid development of new fibers, automated equipments, processes and applications. Diversity of worsted spun yarns, lack of human expertise, and inconsistency among manually generated process plans in consequency of adjustment machine parameters owing to change up raw materials frequently increase the necessity of developing computer aided process planning(CAPP) systems for spinning process. Expert systems offer one of techniques to develop CAPP systems which would behave in a knowledgeable manner. Expert systems are the problem-solving computer program that can reach a level of performance comparable to that of a human expert in some specialized problem domain. This paper is described as job justification module. The job justification module performs to consult with users on which worsted spun yarn manufacturing process planning under the various factors, e.g., raw materials, machine parameters and required yarn counts. Also, the developed module informs the various knowledges relevant process planning. The job justification module offers the control parameters at each process and includes the various standard process plans as database. These knowledges are generated by facts and rules within rule bases.
전문가의 지식을 기반으로 한 추천시스템에 대한 다양한 연구가 최근 활발히 진행되고 있다. 지금까지의 전문가 기반 추천 시스템이 공통된 전문가 그룹의 지식을 바탕으로 모두에게 아이템을 추천하였다면, 본 논문에서는 개인의 필요와 전문가에 대한 관점을 반영한 개인화된 전문가 그룹의 지식을 기반으로 한 추천 시스템을 제안한다. 개인화된 전문가 그룹을 찾는 과정이 제안하는 추천 시스템에서 가장 중요한 부분이다. 이를 위해 개인화된 전문가를 효율적으로 찾아내는 지지 벡터 머신(SVM) 기반 기법을 제안한다. 추천 시스템에서 널리 사용되는 k 근접이웃 알고리즘과의 비교를 통하여서 개인화된 전문가를 기반으로 한 협업 필터링 추천 시스템의 효용성을 입증한다.
Simulation output knowledge analysis is one of problem-solving and/or knowledge adquistion process by investgating the system behavior under study through simulation . This paper describes an approach to simulation outputknowldege analysis using fuzzy neural network model. A fuzzy neral network model is designed with fuzzy setsand membership functions for variables of simulation model. The relationship between input parameters and output performances of simulation model is captured as system behavior knowlege in a fuzzy neural networkmodel by training examples form simulation exepreiments. Backpropagation learning algorithms is used to encode the knowledge. The knowledge is utilized to solve problem through simulation such as system performance prodiction and goal-directed analysis. For explicit knowledge acquisition, production rules are extracted from the implicit neural network knowledge. These rules may assit in explaining the simulation results and providing knowledge base for an expert system. This approach thus enablesboth symbolic and numeric reasoning to solve problem througth simulation . We applied this approach to the design problem of broadband communication network.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.