• Title/Summary/Keyword: experimental warming

Search Result 186, Processing Time 0.033 seconds

Reaction Properties of Non-Cement Mortar Using Ground Granulated Blast Furnace Slag (고로슬래그 미분말을 사용한 무시멘트 경화체의 반응 특성)

  • Park, Sun-Gyu;Kwon, Seung-Jun;Kim, Yun-Mi;Lee, Sang-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.9
    • /
    • pp.392-399
    • /
    • 2013
  • The purpose of this study is to identify the manufacturing possibility of non-cement mortar using blast furnace slag and alkali accelerator. In this experimental study, the blast furnace slag which is the by-product of the steel industry substitute for cement, and the potassium hydroxide(KOH), calcium hydroxide ($Ca(OH)_2$) and sodium hydroxide(NaOH) as stimulus were added to each specimen. And the analysis on reaction property of non-cement mortar was conducted by measurement such as flexural and compressive strength, XRD, EDS and SEM. From the test results, it can be founded that $SiO_2$ and CaO included in the blast furnace slag are released and make the calcium silicate hydrate like the hydration reaction of the cement. Also, the continued study is need to reduce emission of $CO_2$ because of major content in filed of the building construction.

AC Breakdown Voltage Characteristics of SF6/CF4 in Uniform field (평등전계에서 SF6/CF4 혼합가스의 AC절연내력 특성)

  • Hwang, Chung-Ho;Park, Woo-Shin;Kim, Nam-Ryul;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.4
    • /
    • pp.381-387
    • /
    • 2007
  • The excellent dielectric properties of $SF_6$(sulfur hexafluoride) have lead to its wide range of application in the field of high voltage insulation. Because there has been some recent concern regarding the environmental impacts of $SF_6$ binary gas mixtures, with $SF_6$ as the main component, have been the subject of active research. Scientists have long been interested in the possible use of gaseous fluorocarbons, including $CF_4$ (Carton Tetrafluoride), in high voltage applications due to their inert character and high dielectric strength. This paper presents experimental results concerning the AC breakdown characteristics lot various mixtures of $SF_6/CF_4$ in a test chamber and 25.8 kV GIS (Gas Insulation Switchgear) at practical pressures (0.1-04 MPa) and gap lengths (0.5 mm, 1 mm) in a test chamber. In the result, it was observed that an increase in the dielectric strength is attained through the addition of $SF_6$ to $CF_4$. It is possible to make an environment friendly gas insulation material while maintaining the dielectric strength by combing $SF_6$ and $CF_4$ which generates a lower level of the "global warming" effect.

Hangbisan, Sulfur-based Oriental Medicine, Lowers the Blood Cholesterol Level of ob/ob Obese Mice (유전성 비만 마우스에 대한 항비산의 혈중 콜레스테롤 저하 효과)

  • Chae, Myoung-Hee;No, Jin-Gu;Jhon, Deok-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.1
    • /
    • pp.27-31
    • /
    • 2007
  • Among oriental medicine, sulfur is known to generate heat in the human body. Since body warming reaction results in the consumption of energy source, the medicines containing sulfur could help in the weight loss of laboratory rats. This study was designed to determine the possible weight loss effects of Hangbisan, sulfur based oriental medicine, on ob/ob mice. The obese mice were fed with standard diet containing 10% (w/w) Hangbisan or 10% (w/w) cellulose during 12 weeks. Hangbisan affected the weight loss of obese mice as cellulose did during experimental periods, while also reducing the level of plasma total cholesterol. These results suggest that dietary Hangbisan improved the composition of blood profiles in obese mice, and therefore has potential as an anti-obesity ingredient in the application of oriental medicine compounds.

Comparative Analysis of Italian Ryegrass Vegetation Indices across Different Sowing Seasons Using Unmanned Aerial Vehicles (무인기를 이용한 이탈리안 라이그라스의 파종계절별 식생지수 비교)

  • Yang Seung Hak;Jung Jeong Sung;Choi Ki Choon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.2
    • /
    • pp.103-108
    • /
    • 2023
  • Due to the recent impact of global warming, heavy rainfall and droughts have been occurring regardless of the season, affecting the growth of Italian ryegrass (IRG), a winter forage crop. Particularly, delayed sowing due to frequent heavy rainfall or autumn droughts leads to poor growth and reduced winter survival rates. Therefore, techniques to improve yield through additional sowing in spring have been implemented. In this study, the growth of IRG sown in Spring and Autumn was compared and analyzed using vegetation indices during the months of April and May. Spectral data was collected using an Unmanned Aerial Vehicle (UAV) equipped with a hyperspectral sensor, and the following vegetation indices were utilized: Normalized Difference Vegetation Index; NDVI, Normalized Difference Red Edge Index; NDRE (I), Chlorophyll Index, Red Green Ratio Index; RGRI, Enhanced Vegetation Index; EVI and Carotenoid Reflectance Index 1; CRI1. Indices related to chlorophyll concentration exhibited similar trends. RGRI of IRG sown in autumn increased during the experimental period, while IRG sown in spring showed a decreasing trend. The results of RGRI in IRG indicated differences in optical characteristics by sowing seasons compared to the other vegetation indices. Our findings showed that the timing of sowing influences the optical growth characteristics of crops by the results of various vegetation indices presented in this study. Further research, including the development of optimal vegetation indices related to IRG growth, is necessary in the future.

Enhancing Carbon Dioxide Storage Efficiency in Aquifers through Surfactant Application (계면활성제 활용에 따른 공극 규모 이산화탄소 저장 효율 향상)

  • Gang, Seokgu;Jung, Jongwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.11
    • /
    • pp.63-70
    • /
    • 2023
  • Underground carbon dioxide (CO2) storage emerges as a pivotal strategy for mitigating atmospheric CO2 emissions and addressing global warming concerns. This study investigates techniques to optimize storage efficiency in aquifers, which stand out for their superior capacity compared to other geological layers. The focus is on the application of nonionic and anionic surfactants to enhance CO2 storage efficiency within confined spaces. A specialized micromodel facilitating fluid flow observation was employed for the evaluation. Experimental results revealed a noteworthy minimum 40% increase in storage efficiency at the lowest injection rate when utilizing nonionic and anionic surfactants, in comparison to pure water injection. Interestingly, no significant variations in storage efficiency were observed based on the ionicity and concentration of the surfactants under investigation. These findings have implications for guiding the selection and concentration determination of surfactants in future underground CO2 storage endeavors.

Heat tolerance of goats to increased daily maximum temperature and low salinity of drinking water in tropical humid regions

  • Asep Indra Munawar Ali;Sofia Sandi;Lili Warly;Armina Fariani;Anggriawan Naidilah Tetra Pratama;Abdullah Darussalam
    • Animal Bioscience
    • /
    • v.37 no.6
    • /
    • pp.1130-1139
    • /
    • 2024
  • Objective: The daily maximum temperature and seawater level continuously increase as global warming continues. We examined the adaptability and production performance of heat-stressed goats with a supply of low-saline drinking water. Methods: Twelve Kacang and Kacang Etawah cross goats were exposed to two climatic conditions (control, 25℃ to 33℃, 83% relative humidity [RH], temperature humidity index [THI]: 76 to 86; and hot environment, 26℃ to 39℃, 81% RH, THI: 77 to 94) and two salt levels in drinking water (0% and 0.4% NaCl). The experimental design was a Latin Square (4×4) with four treatments and four periods (28 days each). Results: Temperature of the rectal, skin, and udder, and respiration rate rose, reached a maximum level on the first day of heat exposures, and then recovered. Plasma sodium rose at 0.4% NaCl level, while the hot environment and salinity treatments increased the drinking water to dry matter (DM) intake ratio. Water excretion was elevated in the hot environment but lowered by the increase in salinity. Total lying time increased, whereas change position frequency decreased in the hot condition. Lying and ruminating and total ruminating time increased and explained the enhanced DM digestibility in the hot conditions. Conclusion: The goats exhibited a high level of plasma sodium as salinity increased, and they demonstrated physiological and behavioral alterations while maintaining their production performances under increasing daily maximum temperatures.

Vibration characteristics of an ultrasonic waveguide for cooling (냉각용 초음파 웨이브가이드의 진동 특성)

  • Kim, Hyunse;Lim, Euisu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.568-575
    • /
    • 2020
  • Ultrasound has been widely used in various industrial fields. One of challenging application areas is cooling microelectronics. Ultrasonic cooling systems can work with air, argon (Ar) and nitrogen (N2) instead of conventional refrigerant such as freon gas, which can cause global warming. Furthermore, ultrasonic systems do not have moving parts, thus high durability can be obtained. So it is necessary to develop ultrasonic cooling systems due to environmental issues and durability points. In this paper, the design and fabrication processes are explained. When designing the system, a feasibility test was performed with a prototype cooler. Based on the result, finite element analysis with ANSYS software was performed. The predicted anti-resonance frequency for a piezoelectric actuator was 34.8 kHz, which was in good agreement with the experimental result of 34.6 kHz with 0.6% error. In addition, the predicted anti-resonance frequency for the ultrasonic waveguide was 39.4 kHz, which also agreed well with the experimental value of 39.8 kHz with 1.0% error. Based on these results, the developed ultrasonic waveguide might be applicable in microchip cooling.

An Experimental Study on a Performance Evaluation of Internal Insulation of Buildings Over 20 Years Old (20년 이상 경과된 노후건축물의 단열재 성능평가에 관한 실험적 연구)

  • Kim, Hyun-Jin;Choi, Se-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.6
    • /
    • pp.539-547
    • /
    • 2019
  • Recently, the international community signed a climate change agreement to prevent global warming. Yet currently, the fossil fuels have been widely used in to supply building energy for cooling and heating. The Green Building certification (G-SEED), an energy efficiency rating for new or existing buildings requires that buildings meet certain conditions. Insulation is used as a building material to reduce the energy supply to buildings and to improve the thermal insulation, and it accounts for more than 90% of the total heat resistance provided by the building surface components that meet the energy-saving design standards of new buildings. In this investigation, a performance evaluation study was conducted through an experimental study by directly extracting the foam polystyrene insulation on-site during the remodeling of a building that was in the range of 22~38 years old. Through tests, it was found that the thermal conductivity of the extrusion method insulation (XPS) was reduced by 48% and the compressive strength of XPS decreased by 36% compared to KS M 3808, which is the initial quality standard. For bead method insulation (EPS) with a thickness of 50mm, the thermal conductivity, the compressive strength, and flexural failure load were similar to the initial quality standard. Therefore, in the calculation of the primary energy requirement per unit area per year, the performance of bead method insulation can be estimated simply by considering the thickness of the insulation, while a correction factor that considers its performance deterioration should be applied when extrusion method insulation is used.

Survival of isolated human preantral follicles after vitrification: Analyses of morphology and Fas ligand and caspase-3 mRNA expression

  • Wiweko, Budi;Soebijanto, Soegiharto;Boediono, Arief;Mansyur, Muchtaruddin;Siregar, Nuryati C;Suryandari, Dwi Anita;Aulia, Ahmad;Djuwantono, Tono;Affandi, Biran
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.46 no.4
    • /
    • pp.152-165
    • /
    • 2019
  • Objective: This study aimed to examine the effect of vitrification on apoptosis and survival in human preantral follicles after thawing. Methods: This experimental study was conducted at an acute tertiary care hospital from March 2012 to April 2013. Ovaries were sliced into 5 × 5 × 1-mm pieces and divided into the following three groups: preantral follicle isolation, ovarian tissue vitrification-warming followed by follicle isolation, and immunohistochemistry of fresh ovarian tissue. For statistical analyses, the Student t-test, chi-square test, Kruskal-Wallis test, and Kaplan-Meier survival analysis were used. Results: A total of 161 preantral follicles (70% secondary) were collected from ovarian cortex tissue of six women between 30 and 37 years of age who underwent oophorectomy due to cervical cancer or breast cancer. There were no significant differences in the follicular morphology of fresh preantral follicles and vitrified follicles after thawing. The mean Fas ligand (FasL) mRNA expression level was 0.43 ± 0.20 (relative to β-actin) in fresh preantral follicles versus 0.51 ± 0.20 in vitrified follicles (p= 0.22). The mean caspase-3 mRNA expression level in fresh preantral follicles was 0.56 ± 0.49 vs. 0.27 ± 0.21 in vitrified follicles (p= 0.233). One vitrified-thawed secondary follicle grew and developed to an antral follicle within 6 days of culture. Conclusion: Vitrification did not affect preantral follicle morphology or mRNA expression of the apoptosis markers FasL and caspase-3. Further studies are required to establish whether vitrification affects the outcomes of in vitro culture and the maturation of preantral follicles.

Evaluation of Reinforcing Performance of Window Protection Device Against Strong Wind (강풍에 대비한 창호보호장치의 보강성능 평가)

  • Park, Won Bin;Kim, Hong Jin
    • Journal of the wind engineering institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.155-161
    • /
    • 2018
  • In modern society, damage caused by strong winds such as typhoons is expected to increase due to urbanization and global warming. In order to test the reinforcement performance of the newly developed window protection device, two-point force test and uniformly distributed load test were carried out on non-reinforced plate glass. It reinforcement performance of the window protection device was evaluated based on the flexural performance improvement. The analytical performance of the window protection device was evaluated by analysis using differential equations of elastic loading method and deflection curve and Midas-Gen. First, the analytical window protection device was evaluated by formulae derived using differential equations of elastic loading and deflection curve. The validity of the derived formulae investigated by comparing the maximum deflection of the central part of the plate with the experimental value and the theoretical value at maximum load. Then the results were compared with those by finite element FE method using Midas-Gen. Under the experimental conditions, with the window protection device, stress reduction effect up to 40% and deflection reduction up to 71.4% under the same load were obtained. It was also found that it is advantageous to perform the FE analysis using the plate element when the performance is evaluated because the error of FE analysis result using plate elements is far less than that using beam elements.