• Title/Summary/Keyword: experimental stress analysis

Search Result 2,072, Processing Time 0.024 seconds

The Effects of Functional Tea (Mori Folium, Lycii Fructus, Chrysanthemi Flos, Zizyphi Fructus, Sesamum Semen, Raphani Semen) Supplement with Medical Nutrition Therapy on the Blood Lipid Levels and Antioxidant Status in Subjects with Hyperlipidemia (고지혈증 환자에서 의학영양치료와 병행하여 섭취한 기능성차(상엽, 구기자, 국화, 대추, 참깨, 나복자)의 혈중 지질 농도 저하 및 항산화 효과)

  • Lim, Hyun-Jung;Cho, Kum-Ho;Choue, Ryowon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.1
    • /
    • pp.42-56
    • /
    • 2005
  • Hyperlipidemia is one of the risk factors for coronary artery disease. Despite of epidemiological evidence that tea consumption is associated with the reduced risk of coronary heart disease, experimental studies designed to show that drinking tea affects blood lipid concentration or oxidative stress have been unsuccessful. The purpose of this study was to investigate whether functional tea (three servings/day) supplement with medical nutrition therapy (MNT) lead to a beneficial outcomes in mildly hyperlipidemic adults. From February to October, 2003, the 43 hyperlipidemic (23 men, 20 women) subjects (total cholesterol$\geq$200 mg/dL or triglyceride$\geq$150 mg/dL) admitted to K Medical Center were studied. Subjects were randomly divided into 3 groups; placebo tea (PT), half dose of functional tea (HFT), full dose of functional tea (FFT). During 12 weeks of study period, the subjects were given placebo or functional tea daily with MNT. Anthropometric measurements, blood chemical analysis including lipid levels, total superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels, and dietary assessment were carried out at the beginning and end of experiment. The effects of functional tea were compared with the placebo in randomized clinical trial study. The placebo was prepared to match with the functional tea in color and taste. After the 12 weeks of MNT, the subjects had regular and balanced meal pattern. Consumption of foods high in cholesterol and saturated fat, salty foods, fried foods, and instant foods decreased significantly in all three groups (p<0.05). Intake of energy and cholesterol also decreased (p<0.05). Drinking three servings per day (390 mL/day) of functional tea significantly reduced the levels of blood triglyceride (HFT, 42.5%; FFT, 29.4%), total cholesterol (HFT, 8.5%; FFT, 13.7%), and atherogenic index (HFT, 14.6%; FFT, 21.7%). Whereas no changes were found in the LDL-, HDL-cholesterollevels, and LDL/HDL ratio. Plasma homocysteine (Hcy) concentration decreased significantly (p<0.05) in functional tea groups (HFT, 14.9%; FFT, 14.1%). SOD increased significantly (p<0.05) in HFT (8.3%). GSH-Px increased significantly (p<0.05) in FFT (12.8%). In conclusion, the MNT improved the dietary habits, in addition, functional tea supplement decreased blood lipid levels and Hcy, and increased SOD and GSH-Px levels. These results indicate that functional tea consumption may decrease the risk of cardiovascular disease via improving blood lipid levels and antioxidant status.

Effect of Ginseng on Visceral Nucleic Acid Content of Rats (고려인삼이 흰쥐의 장기조직 핵산 함유량에 미치는 영향)

  • Kim, Chul;Choi, Hyun;Kim, Chung-Chin;Kim, Jong-Kyu;Kim, Myung-Suk;Huh, Man-Kyung
    • The Korean Journal of Physiology
    • /
    • v.5 no.1
    • /
    • pp.23-42
    • /
    • 1971
  • I. Chemical analysis A study was planned to see if administration of ginseng extract has any influence upon the adrenal, the hepatic, the splenic, and the pancreatic nucleic acid contents of rats, and to estimate the effect of ACTH administration as a substitute for stress reaction upon these nucleic acid contents of rats previously primed with ginseng. Ninety male rats$(body\;weight:\;150{\sim}200gm)$ were divided into the ginseng, the saline, and the normal control groups, which received for 5 days 0.5ml/100 gm body weight of ginseng extract solution (4 mg of ginseng alcohol extract in 1 ml of saline), same amount of saline, or no medication, respectively. On the 5th experimental day, each of the 3 groups was further divided into 2 subgroups yielding the ginseng, the ginseng-ACTIT, the saline, the saline-ACTH, the normal control, and the normal-ACTH subgroups. The ginseng, the saline, and the normal control subgroups were sacrificed 3 hours after the last medication, while the ginseng-ACTH, the saline·ACTH, and the normal-ACTH subgroups received ACTH(0.1 unit/subject) 1 hour after the last medication and were sacrificed after 1 more hour. The adrenal gland, the liver, the spleen and the pancreas of each rat were measured for RNA and DNA contents using the chemical method of Schmidt-Thannhauser-Schneider. Following results were obtained: 1. Adrenal RNA and DNA contents and RNA/DNA ratio were all significantly higher in the ginseng group compared with the values obtained from the normal control and the saline groups. Generally administration of ACTH reduced nucleic acid contents of the viscera examined. However, in the ginseng group the rate of decrease [(value of ginseng-ACTH subgroup-value of ginseng subgroup) x100/value of ginseng subgroup)] in adrenal RNA and DNA contents and in RNA/DNA ratio were more conspicuous than they were in the normal control and the saline groups. 2. Hepatic RNA and DNA contents and RNA/DNA ratio were all significantly less in the ginseng group than in the normal control and the saline groups. After ACTH, the rate of decrease in hepatic RNA, DNA, and RNA/DNA ratio of the ginseng· group was less conspicuous than those of the other 2 groups. 3. With regard to the splenic nucleic acid contents, the RNA and the RNA/DNA values of the ginseng group were higher than those of the normal control group but lower than those of the saline group, while the DNA value of the ginseng group was lower than that of the normal control group but higher than that of the saline group. Following administration of ACTH, the rate of decrease in RNA and DNA contents and in RNA/DNA ratio of the ginseng group was more conspicuous than that of the normal control group but less remarkable than that of the saline group. 4. Pancreatic RNA and DNA contents were notably lower in the ginseng group than in the normal control and the saline groups. However, the RNA/DNA ratio of the ginseng group was higher than that of the normal control and the saline groups.'After ACTH, the rate of decrease in pancreatic RNA and RNA/DNA ratio of the ginseng group was less than that of the normal. control group but more than that of the saline group, while the DNA content was actually increased in the ginseng group though it decreased in the normal control and the saline groups. Although the results are not clear enough for an accurate interpretation, they seem to indicate that ginseng exerts notable influence upon the RNA and DNA contents and the RNA/DNA ratio of the viscera stodied. On the whole the drug tends to increase the RNA and DNA contents and RNA/DNA ratio of the adrenal gland but seems to diminish the values of the other 3 viscera. In the early period following ACTH, ginseng facilitates the fall in RNA and DNA contents and RNA/DNA ratio of the adrenal gland, while it tends to reduce the fall in the values of the other viscera studied. II. Autoradiographic and histochemical analysis It was planned autoradiographically and histochemically to affirm and extend the results obtained in part I with regard to the chemically assessed change in the adrenal, the pancreatic, the hepatic and the splenic DNA and RNA contents under the influence of ginseng and ACTH. Fourty male mice (body weight: $18{\sim}20gm$) and 20 male rats were used. Each animal species was divided into the saline, the ginseng, the saline-ACTH, and the ginseng-ACTH groups according to the administered drugs. In the mice, the adrenal, the pancreatic, the splenic and the hepatic DNA-synthetic activity was assessed autoradiographically after administration of $^3H$-thymidine. In the rats, the RNA content of the above 4 organs was assessed histochemically after staining them with methylgreen pyronine. Following results were obtained: 1. Labeled cells were significantly more numerous in the adrenal cortex, the spleen and the liver of the ginseng group than in those of the saline group, although they were less numerous in the pancreas of the ginseng group than in the pancreas of the saline group. The adrenocortical, the pancreatic, the splenic and the hepatic tissues were stained with methylgreen pyronine more deeply in the ginseng group than in the saline group. 2. The adrenocortical, the pancreatic, the splenic and the hepatic tissues contained labeled cells less numerously in the saline-ACTH and the ginseng-ACTH group than in the saline and the ginseng groups. All these tissues were also stained with methylgreen pyronine less deeply in the saline-ACTH and the ginseng-ACTH groups than in the saline and the ginseng groups. 3. However, the adrenal cortex, the spleen, the pancreas, and the liver contained labeled cells more numerously in the ginseng-ACTH group than in the saline-ACTH group. the 4 tissues were stained with methylgreen pyronine more deeply in the ginseng-ACTH group than in the saline-ACTH group. It is inferred from the above results that though with exception, the ginseng mostly facilitates cellular synthesis of nucleic acids and mitigates reduction in nucleic acid content of tissues after administration of ACTH.

  • PDF