• 제목/요약/키워드: experimental fire tests

검색결과 155건 처리시간 0.019초

Numerical predictions of the time-dependent temperature field for the 7th Cardington compartment fire test

  • Lopes, Antonio M.G.;Vaz, Gilberto C.;Santiago, Aldina
    • Steel and Composite Structures
    • /
    • 제5권6호
    • /
    • pp.421-441
    • /
    • 2005
  • The present work reports on a numerical simulation of a compartment fire. The fire was modeled using a simplified approach, where combustion is simulated as a volumetric heat release. Computations were performed with the commercial code CFX 5.6. Radiation was modeled with a differential approximation (P1 model), while turbulence effects upon the mean gas flow were dealt with a SST turbulence model. Simulations were carried out using a transient approach, starting at the onset of ignition. Results are provided for the temperature field time evolution, thus allowing a direct comparison with the analytical and experimental data. The high spatial resolution available for the results proved to be of great utility for a more detailed analysis of the thermal impact on the steel structure.

내화뿜칠재 보와 기둥의 내화성능 분리평가에 대한 실험적 연구 (Experimental Study on Separate Evaluations of Fire Resistance of SFRM for Steel Beams and Columns)

  • 전수민;김재준
    • 한국화재소방학회논문지
    • /
    • 제29권4호
    • /
    • pp.1-6
    • /
    • 2015
  • 강구조용 내화뿜칠재는 내화구조로 인정을 받아야 사용할 수 있는데 내화뿜칠재 인정시 보와 기둥이 분리되어 평가 및 인정되고 있다. 보와 기둥의 내화시험 표준시험체는 단면형상계수 등이 상이하므로 내화피복 두께산정방법(KS F 2848)에 따르면 동일피복재를 사용하는 경우 동일성능의 보용 뿜칠재와 기둥용 뿜칠재는 피복두께가 상이할 것으로 예상할 수 있다. 그러나 현재 인정이 유효한 내화뿜칠재의 보 기둥 피복두께는 제품별로 서로 동일하거나 매우 유사하다. 그렇다면 동 뿜칠재의 내화구조 인정을 위한 성능시험시 보와 기둥의 강재평균온도에 차이가 있었을 것이라고 추정해 볼 수 있다. 본 연구를 통하여 보용 또는 기둥용 내화뿜칠재의 강재평균온도를 비교분석하여, 보용 기둥용으로 분리하여 평가 및 인정하고 있는 현 제도를 검토해 보고자 한다.

Experimental studies on the behaviour of headed shear studs for composite beams in fire

  • Lim, Ohk Kun;Choi, Sengkwan;Kang, Sungwook;Kwon, Minjae;Choi, J. Yoon
    • Steel and Composite Structures
    • /
    • 제32권6호
    • /
    • pp.743-752
    • /
    • 2019
  • Steel and concrete composite structures are commonly applied in multi-story buildings as they maximise the material strength through composite action. Despite the popularity of employing a trapezoidal deck slab, limited experimental data are available under elevated temperatures. The behaviour of the headed shear stud embedded in a transverse trapezoidal deck and solid slab was investigated at both ambient and fire conditions. Twelve push-out tests were conducted according to the ISO 834 standard fire utilising a customised electric furnace. A stud shearing failure was observed in the solid slab specimen, whereas the failure mode was changed from a concrete-dominated failure to the stud shearing in the transverse deck specimen with an increase in temperature. Comparisons between the experimental observations and design requirements are presented. The Eurocode design guidance on the transverse deck slab gives a highly conservative estimate for shear resistance. A new design formula was proposed to determine the capacity of the shear connection regardless of the slab type when the stud shearing occurs at high temperatures.

Experimental testing and evaluation of coating on cables in container fire test facility

  • Aurtherson, P. Babu;Hemanandh, J.;Devarajan, Yuvarajan;Mishra, Ruby;Abraham, Biju Cherian
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1652-1656
    • /
    • 2022
  • Fire tests were conducted on cables using fire-retardant paint employed in nuclear power plants that transmit electrical power, control and instrument signals. The failure criteria of various power and control cables coated with fire retardant coating at three different coating thicknesses (~0.5 mm, 1.0 mm & 1.5 mm) were studied under direct flame test using Container Fire Test Facility (CFTF) based on standard tests for bare cables. A direct flame fire test was conducted for 10 min with an LPG ribbon burner rated at ten by fixing the cable samples in a vertical cable track. Inner sheath temperature was measured until ambient conditions were achieved by natural convection. The cables are visually evaluated for damage and the mass loss percentage. Cable functionality is ascertained by checking for electrical continuity for each sample. The thickness of cable coating on fire exposure is also studied by comparing the transient variation of inner sheath temperature along the Cable length. This study also evaluated the adequacy of fire-retardant coating on cables used for safety-critical equipment in nuclear power plants.

주거용 컨테이너 화재 특성에 관한 실험적 고찰 (An Experimental Study on Characteristics of the Residential Container Building Fire)

  • 이정윤;정기창;김홍
    • 한국안전학회지
    • /
    • 제23권1호
    • /
    • pp.24-27
    • /
    • 2008
  • The recent fire incident in an elementary school of Chonan city causes the media focus on the fire safety of residential container buildings. In this study, real fire tests were conducted in this kind of buildings. Fire temperature and radiant heat flux were measured, in order to investigate the hazard-reduction effects during the fire emergency of residential container buildings. According to the test results, flash over occur in 10 minutes, peak fire temperature was $935.5^{\circ}C$, peak radiant heat flux was $24.99kW/m^2$ at 8minutes after residential container building fire.

Behavior of composite box bridge girders under localized fire exposure conditions

  • Zhang, Gang;Kodur, Venkatesh;Yao, Weifa;Huang, Qiao
    • Structural Engineering and Mechanics
    • /
    • 제69권2호
    • /
    • pp.193-204
    • /
    • 2019
  • This paper presents results from experimental and numerical studies on the response of steel-concrete composite box bridge girders under certain localized fire exposure conditions. Two composite box bridge girders, a simply supported girder and a continuous girder respectively, were tested under simultaneous loading and fire exposure. The simply supported girder was exposed to fire over 40% of its span length in the middle zone, and the two-span continuous girder was exposed to fire over 38% of its length of the first span and full length of the second span. A measurement method based on comparative rate of deflection was provided to predict the failure time in the hogging moment zone of continuous composite box bridge girders under certain localized fire exposure condition. Parameters including transverse and longitudinal stiffeners and fire scenarios were introduced to investigate fire resistance of the composite box bridge girders. Test results show that failure of the simply supported girder is governed by the deflection limit state, whereas failure of the continuous girder occurs through bending buckling of the web and bottom slab in the hogging moment zone. Deflection based criterion may not be reliable in evaluating failure of continuous composite box bridge girder under certain fire exposure condition. The fire resistance (failure time) of the continuous girder is higher than that of the simply supported girder. Data from fire tests is successfully utilized to validate a finite element based numerical model for further investigating the response of composite box bridge girders exposed to localized fire. Results from numerical analysis show that fire resistance of composite box bridge girders can be highly influenced by the spacing of longitudinal stiffeners and fire severity. The continuous composite box bridge girder with closer longitudinal stiffeners has better fire resistance than the simply composite box bridge girder. It is concluded that the fire resistance of continuous composite box bridge girders can be significantly enhanced by preventing the hogging moment zone from exposure to fire. Longitudinal stiffeners with closer spacing can enhance fire resistance of composite box bridge girders. The increase of transverse stiffeners has no significant effect on fire resistance of composite box bridge girders.

Temperature distribution in a full-scale steel framed building subject to a natural fire

  • Wald, Frantisek;Chladna, Magdalena;Moore, David;Santiago, Aldina;Lennon, Tom
    • Steel and Composite Structures
    • /
    • 제6권2호
    • /
    • pp.159-182
    • /
    • 2006
  • Current fire design codes for determining the temperature within the structural elements that form part of a complete building are based on isolated member tests subjected to the standard fire. However, the standard time-temperature response bears little relation to real fires and doesn't include the effects of differing ventilation conditions or the influence of the thermal properties of compartment linings. The degree to which temperature uniformity is present in real compartments is not addressed and direct flame impingement may also have an influence, which is not considered. It is clear that the complex thermal environmental that occurs within a real building subject to a natural fire can only be addressed using realistic full-scale tests. To study global structural and thermal behaviour, a research project was conducted on the eight storey steel frame building at the Building Research Establishment's Cardington laboratory. The fire compartment was 11 m long by 7 m wide. A fire load of $40kg/m^2$ was applied together with 100% of the permanent actions and variable permanent actions and 56% of live actions. This paper summarises the experimental programme and presents the time-temperature development in the fire compartment and in the main supporting structural elements. Comparisons are also made between the test results and the temperatures predicted by the structural fire Eurocodes.

경년변화에 따른 내화도료의 내화성능에 관한 실험적 연구 (An Experimental Study on the Fire Resistance Performance of Intumescent Coating System with Time Elapse)

  • 김대회;성시창;최동호;박수영;이세현;이종찬
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2008년도 춘계학술논문발표회 논문집
    • /
    • pp.61-64
    • /
    • 2008
  • Applying fire resistive coating to steel members is one of the general methods to secure fire resistance performance of steel members. And intumescent coating system is currently one of methods giving fire resistance to steel members. Intumescent coating system for fire resistance, however, has undesirable weaknesses that fire resistance performance of steel members is being deteriorated due to cracks and falling-offs of the coverings as time goes after completion of the coverings to the members. This study is designed to understand changes in fire resistance performance of intumescent coating system through follow-up tests on temperature of unexposed surface for the domestic intumescent coating system.

  • PDF

Structural stability of fire-resistant steel (FR490) H-section columns at elevated temperatures

  • Kwon, In-Kyu;Kwon, Young-Bong
    • Steel and Composite Structures
    • /
    • 제17권1호
    • /
    • pp.105-121
    • /
    • 2014
  • A fundamental limitation of steel structures is the decrease in their load-bearing capacity at high temperatures in fire situations such that structural members may require some additional treatment for fire resistance. In this regard, this paper evaluates the structural stability of fire-resistant steel, introduced in the late 1999s, through tensile coupon tests and proposes some experimental equations for the yield stress, the elastic modulus, and specific heat. The surface temperature, deflection, and maximum stress of fire-resistant steel H-section columns were calculated using their own mechanical and thermal properties. According to a comparison of mechanical properties between fire-resistant steel and Eurocode 3, the former outperformed the latter, and based on a comparison of structural performance between fire-resistant steel and ordinary structural steel of equivalent mechanical properties at room temperature, the former had greater structural stability than the latter through $900^{\circ}C$.

An experimental study on fire resistance of medical modular block

  • Kim, Hyung-Jun;Lee, Jae-Sung;Kim, Heung-Youl;Cho, Bong-Ho;Xi, Yunping;Kwon, Ki-Hyuck
    • Steel and Composite Structures
    • /
    • 제15권1호
    • /
    • pp.103-130
    • /
    • 2013
  • Fire performance and fire safety of high-rise buildings have become major concerns after the disasters of World Trade Center in the U.S. in 2001 and Windsor tower in Spain in 2005. Performance based design (PBD) approaches have been considered as a better method for fire resistance design of structures because it is capable of incorporating test results of most recent fire resistance technologies. However, there is a difficulty to evaluate fireproof performance of large structures, which have multiple structural members such as columns, slabs, and walls. The difficulty is mainly due to the limitation in the testing equipment, such as size of furnace that can be used to carry out fire tests with existing criteria like ISO 834, BS 476, and KS F 2257. In the present research, a large scale calorie meter (10 MW) was used to conduct three full scale fire tests on medical modular blocks. Average fire load of 13.99 $kg/m^2$ was used in the first test. In the second test, the weighting coefficient of 3.5 (the fire load of 50 $kg/m^2$) was used to simulate the worst fire scenario. The flashover of the medical modular block occurred at 62 minutes in the first test and 12 minutes in the second test. The heat resistance capacity of the external wall, the temperatures and deformations of the structural members satisfied the requirements of fire resistance performance of 90 minutes burning period. The total heat loads and the heat values for each test are calculated by theoretical equations. The duration of burning was predicted. The predicted results were compared with the test results, and they agree quite well.