• 제목/요약/키워드: experimental facility

검색결과 766건 처리시간 0.031초

집단에너지 공급 축열조의 디퓨져 형태별 성층화 연구 (Study on Stratification according to Diffuser Shape of the Thermal Storage Tank in Integrated Energy)

  • 장철용;조수;최석용
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 춘계학술발표대회 논문집
    • /
    • pp.300-303
    • /
    • 2008
  • The stratification effect was investigated with four different types of diffuser shape in a thermal storage tank. For this study, experimental facility was constructed, which was composed of experimental thermal storage tank, hot and cold water storage tanks, boiler, chiller, data acquisition system, etc.. Visualization and lab scale experimental result showed that radial curved type diffuser was the highest degree of stratification among the four diffuser shapes.

  • PDF

원자로용기 외벽냉각시 용기와 단열재 사이의 자연순환 이상유동에 관한 실험적 연구 (An Experimental Study on the Two-Phase Natural Circulation Flow through an Annular Gap between Reactor Vessel and Insulation under External Vessel Cooling)

  • 하광순;박래준;김환열;김상백;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1897-1902
    • /
    • 2003
  • An 1/21.6 scaled experimental facility was prepared utilizing the results of a scaling analysis to simulate the APRI400 reactor and insulation system. The behaviors of the boiling-induced two-phase natural circulation flow in the insulation gap were observed, and the liquid mass flow rates driven by natural circulation loop were measured by varying the wall heat flux, upper exit slot area and configuration. And non-heating experiments have also been performed and discussed to certify the hydraulic similarity of the heating experiments by injecting air equivalent to the steam generated in the heating experimental condition.

  • PDF

Post Test Analysis of the Phebus FPT1 Experiment

  • Cho, Song-Won;Park, Jong-Hwa;Kim, Hee-Dong
    • Nuclear Engineering and Technology
    • /
    • 제31권1호
    • /
    • pp.88-103
    • /
    • 1999
  • The purposes of this study are to understand the severe accident phenomena, to establish the simulation method for the experimental test, and to assess the current models in MELCOR for future improvement. This paper presents the results of the PHEBUS FPT1 post test analysis using MELCOR computer code, version 1.8.4. The entire PHEBUS facility has been modeled; the core, the primary circuit including the steam generator, and the containment vessel. Both the thermal hydraulic and the fission product behavior have been investigated. The code simulation results of the thermal hydraulic behavior show good agreement with the experimental data, The fission product release and transport are calculated using the CORSOR models in MELCOR code and the results will be compared with the experiment when the experimental data are available.

  • PDF

중공철근으로 보강한 U-플랜지 트러스 복합보의 구조 내력에 관한 실험연구 (Experimental Study on the Structural Capacity of the U-flanged Truss Hybrid Beam with Hollow Rebars)

  • 이성민;오명호;김영호
    • 한국공간구조학회논문집
    • /
    • 제22권3호
    • /
    • pp.65-72
    • /
    • 2022
  • A typical low and medium-sized neighborhood living facility in reinforced concrete building secures a high floor and pursues an efficient module plan(long span). Accordingly, research on the development of new hybrid beams that can innovatively reduce labor costs such as on-site installation and assembly while securing strength and rigidity is ongoing. In order to verify the structural performance of the U-flanged truss composite beam with newly developed shape, Experiments with various variables are required. Based on the results, this study is to evaluate the strength of U-flanged truss hybrid beam through the flexural strength of the Korea Design Code and experimental values. It was evaluated that nominal flexural strength was 110% to 135% higher than the experimental value.

Investigation of thermal hydraulic behavior of the High Temperature Test Facility's lower plenum via large eddy simulation

  • Hyeongi Moon ;Sujong Yoon;Mauricio Tano-Retamale ;Aaron Epiney ;Minseop Song;Jae-Ho Jeong
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3874-3897
    • /
    • 2023
  • A high-fidelity computational fluid dynamics (CFD) analysis was performed using the Large Eddy Simulation (LES) model for the lower plenum of the High-Temperature Test Facility (HTTF), a ¼ scale test facility of the modular high temperature gas-cooled reactor (MHTGR) managed by Oregon State University. In most next-generation nuclear reactors, thermal stress due to thermal striping is one of the risks to be curiously considered. This is also true for HTGRs, especially since the exhaust helium gas temperature is high. In order to evaluate these risks and performance, organizations in the United States led by the OECD NEA are conducting a thermal hydraulic code benchmark for HTGR, and the test facility used for this benchmark is HTTF. HTTF can perform experiments in both normal and accident situations and provide high-quality experimental data. However, it is difficult to provide sufficient data for benchmarking through experiments, and there is a problem with the reliability of CFD analysis results based on Reynolds-averaged Navier-Stokes to analyze thermal hydraulic behavior without verification. To solve this problem, high-fidelity 3-D CFD analysis was performed using the LES model for HTTF. It was also verified that the LES model can properly simulate this jet mixing phenomenon via a unit cell test that provides experimental information. As a result of CFD analysis, the lower the dependency of the sub-grid scale model, the closer to the actual analysis result. In the case of unit cell test CFD analysis and HTTF CFD analysis, the volume-averaged sub-grid scale model dependency was calculated to be 13.0% and 9.16%, respectively. As a result of HTTF analysis, quantitative data of the fluid inside the HTTF lower plenum was provided in this paper. As a result of qualitative analysis, the temperature was highest at the center of the lower plenum, while the temperature fluctuation was highest near the edge of the lower plenum wall. The power spectral density of temperature was analyzed via fast Fourier transform (FFT) for specific points on the center and side of the lower plenum. FFT results did not reveal specific frequency-dominant temperature fluctuations in the center part. It was confirmed that the temperature power spectral density (PSD) at the top increased from the center to the wake. The vortex was visualized using the well-known scalar Q-criterion, and as a result, the closer to the outlet duct, the greater the influence of the mainstream, so that the inflow jet vortex was dissipated and mixed at the top of the lower plenum. Additionally, FFT analysis was performed on the support structure near the corner of the lower plenum with large temperature fluctuations, and as a result, it was confirmed that the temperature fluctuation of the flow did not have a significant effect near the corner wall. In addition, the vortices generated from the lower plenum to the outlet duct were identified in this paper. It is considered that the quantitative and qualitative results presented in this paper will serve as reference data for the benchmark.

우주 유연 붐의 열적 유기 진동에 관한 연구 (A Study on Thermally-induced Vibration of Space Flexible Booms)

  • 공창덕;오경원;방조혁
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1631-1636
    • /
    • 2003
  • The purpose of this study is to analyze the phenomena of the thermally-induced vibration for the flexible space structure due to abrupt change of radiation heating circumstance using the numerical analyze and experiment test. In order to verify this structure, numerical approaches on the simplified flexible tube were compared with experimental test results at the ground experimental facility In this analyze, it was found that the thermal deformation occurs firstly due to fast radiation heating of flexible structure and then the thermally-induced vibration would be induced due to small periodic change of temperature. According to comparison of numerical and experimental result, in case of no tip mass, the first mode vibration by the numerical analyze was O.78Hz same as that of the experimental result However in case of increase tip-masses of 8g l6g, 50g and 100g, the first modes vibration theoretical analyze were 1.75Hz, 1.3Hz, 0.87Hz and O.73Hz, in decrease trend respectively and those by experimental test were 234Hz, 1.5Hz, O.78Hz and O.78Hz in decrease trend respectively Although using the simpled equation for the estimation, the estimation results were similar to experimental results.

  • PDF

Sensitivity analysis of numerical schemes in natural cooling flows for low power research reactors

  • Karami, Imaneh;Aghaie, Mahdi
    • Advances in Energy Research
    • /
    • 제5권3호
    • /
    • pp.255-275
    • /
    • 2017
  • The advantages of using natural circulation (NC) as a cooling system, has prompted the worldwide development to investigate this phenomenon more than before. The interesting application of the NC in low power experimental facilities and research reactors, highlights the obligation of study in these laminar flows. The inherent oscillations of NC between hot source and cold sink in low Grashof numbers necessitates stability analysis of cooling flow with experimental or numerical schemes. For this type of analysis, numerical methods could be implemented to desired mass, momentum and energy equations as an efficient instrument for predicting the behavior of the flow field. In this work, using the explicit, implicit and Crank-Nicolson methods, the fluid flow parameters in a natural circulation experimental test loop are obtained and the sensitivity of solving approaches are discussed. In this way, at first, the steady state and transient results from explicit are obtained and compared with experimental data. The implicit and crank-Nicolson scheme is investigated in next steps and in subsequent this research is focused on the numerical aspects of instability prediction for these schemes. In the following, the assessment of the flow behavior with coarse and fine mesh sizes and time-steps has been reported and the numerical schemes convergence are compared. For more detail research, the natural circulation of fluid was modeled by ANSYS-CFX software and results for the experimental loop are shown. Finally, the stability map for rectangular closed loop was obtained with employing the Nyquist criterion.

건축물에 적용된 우수침투시설의 유출저감효과에 관한 실험적 연구 (An Experimental Study of Runoff Reduction Using Infiltration Facility)

  • 박재로;권혁
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제10권5호
    • /
    • pp.37-44
    • /
    • 2005
  • 본 연구의 목적은 운동장, 주차장, 도로측면, 보도, 기타 주거시설 등의 우수 차집시설에 사용되는 콘크리트 구조물 의 침투능 확보를 위한 투수성 차집 구조물 개발에 관한 것이다. 본 연구결과 우수침투시설의 침투방식은 투수콘크리트를 이용한 방법과 투수공을 이용한 방법, 쇄석을 충진한 방법 모두 유사한 침투능을 확보할 수 있는 것으로 나타났으며, 침투시설의 현장설치시 지반의 조건, 지하수위, 주변 건축물의 영향, 과거의 침수이력, 적용 기능한 침투 시설 등에 대하여 종합적인 검토가 필요함을 알 수 있었다. 침투시설의 유출저감효과를 검증하기 위하여 실험 대상 지역내에 현장 설치하였으며, 침투통과 침투트렌치를 연계한 현장적용 결과 강우량 24 mm 일 경우 89%, 12 mm 일 경우 93%, 140 mm 일 경우 51%, 64 mm 열 경우 75%, 54 mm 일 경우 80%의 유출저감효과가 있는 것으로 나타났다. 일정 강우까지는 강우량이 증가할수록 침투량이 증가하였으며, 일정 강우량 도달시 침투량이 급격히 줄어드는 것을 확인하였다. 침투량은 지반조건, 시공조건, 이전 강우간격 등과 밀접한 관계가 있으며, 향후 장기간의 모니터링을 통하여 정량화 하고자 한다.

시설물 모니터링을 위한 기준영상 기반 스마트폰 영상의 기하보정 (Rectification of Smartphone Image Based on Reference Images for Facility Monitoring)

  • 김휘영;최경아;이임평;윤혁진
    • 대한원격탐사학회지
    • /
    • 제33권2호
    • /
    • pp.231-242
    • /
    • 2017
  • 시설물의 장기적이고 지속적인 사용을 위해서 모니터링은 중요하다. 특히, 도로, 댐, 교량 등의 시설물은 안전과 비용의 문제로 자주 점검하기 어렵다. 이러한 문제에 대한 효율적이고 경제적인 대안으로 스마트폰 기반 모니터링을 고려할 수 있다. 시설물 모니터링을 위해 스마트폰 영상을 정량적으로 분석하기 위해서, 먼저 절대좌표계를 기준으로 보정해야 한다. 본 연구는 임의의 위치에서 취득된 스마트폰 영상을 기준영상을 기반으로 보정하여 시설물 모니터링에 활용하는 방법을 제시한다. 기준영상을 활용하여 지오레퍼런싱을 수행하여 스마트폰의 외부표정요소를 결정한다. 이를 이용하여 스마트폰 영상을 시설물의 대상 객체면에 투영하여 보정한다. 제안된 방법은 보에서 취득한 시험데이터에 적용하였다. 스마트폰의 외부표정요소는 위치 5 cm, 자세 $0.28^{\circ}$ 정확도로 결정되었다. 보정된 스마트폰 영상에서 측정한 길이는 10 cm의 오차를 보였다. 제안된 방법을 이용하여 스마트폰 영상을 시설물 모니터링에 효과적으로 활용할 수 있을 것으로 기대된다.

An investigative study of enrichment reduction impact on the neutron flux in the in-core flux-trap facility of MTR research reactors

  • Xoubi, Ned;Darda, Sharif Abu;Soliman, Abdelfattah Y.;Abulfaraj, Tareq
    • Nuclear Engineering and Technology
    • /
    • 제52권3호
    • /
    • pp.469-476
    • /
    • 2020
  • Research reactors in-core experimental facilities are designed to provide the highest steady state flux for user's irradiation requirements. However, fuel conversion from highly enriched uranium (HEU) to low enriched uranium (LEU) driven by the ongoing effort to diminish proliferation risk, will impact reactor physics parameters. Preserving the reactor capability to produce the needed flux to perform its intended research functions, determines the conversion feasibility. This study investigates the neutron flux in the central experimental facility of two material test reactors (MTR), the IAEA generic10 MW benchmark reactor and the 22 MW s Egyptian Test and Research Reactor (ETRR-2). A 3D full core model with three uranium enrichment of 93%, 45%, and 20% was constructed utilizing the OpenMC particle transport Monte Carlo code. Neutronics calculations were performed for fresh fuel, the beginning of life cycle (BOL) and end of life cycle (EOL) for each of the three enrichments for both the IAEA 10 MW generic reactor and core 1/98 of the ETRR-2 reactor. Criticality calculations of the effective multiplication factor (Keff) were executed for each of the twelve cases; results show a reasonable agreement with published benchmark values for both reactors. The thermal, epithermal and fast neutron fluxes were tallied across the core, utilizing the mesh tally capability of the code and are presented here. The axial flux in the central experimental facility was tallied at 1 cm intervals, for each of the cases; results for IAEA 10 MW show a maximum reduction of 14.32% in the thermal flux of LEU to that of the HEU, at EOL. The reduction of the thermal flux for fresh fuel was between 5.81% and 9.62%, with an average drop of 8.1%. At the BOL the thermal flux showed a larger reduction range of 6.92%-13.58% with an average drop of 10.73%. Furthermore, the fission reaction rate was calculated, results showed an increase in the peak fission rate of the LEU case compared to the HEU case. Results for the ETRR-2 reactor show an average increase of 62.31% in the thermal flux of LEU to that of the HEU due to the effect of spectrum hardening. The fission rate density increased with enrichment, resulting in 34% maximum increase in the HEU case compared to the LEU case at the assemblies surrounding the flux trap.