• Title/Summary/Keyword: experimental dynamics

Search Result 1,825, Processing Time 0.025 seconds

Analytical Study of the Machine Dynamics of the Amplidyne Under the Demagnetization Effect (계산기에 의한 회전형전자증폭기의 동특성 및 감자작용 영향에 관한 해석적 연구)

  • Se Hoon Chang
    • 전기의세계
    • /
    • v.22 no.1
    • /
    • pp.9-19
    • /
    • 1973
  • This paper is for the supplementary studies of the theoretical treaties on the machine dynamics of the amplidyne generator under the influencies of the armature reaction. The author has already shown the time-domain expression of the dynamic relations of the machine with balanced control winding, under this operating condition. In this paper, analytical and experimental studies of a test machine are intended to supplement the theories derived in the previous work, entitled "On the dynamics and the demagnetization effect of the amplidyne generator with auxiliary feedback compensating winding". FACOM 230 digital computer is incorporated for processing of a series of experimental data. The machine dynamics are then numerically analyzed with the aid of the computer. The virtual machine responses to stepwise inputs are compared with the computer output to confirm the influence of the armature reaction effect on to the machine dynamics. dynamics.

  • PDF

Flexural fatigue modeling of short fibers/epoxy composites

  • Shokrieh, M.M.;Haghighatkhah, A.R.;Esmkhani, M.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.3
    • /
    • pp.287-292
    • /
    • 2017
  • In the present research, an available flexural stiffness degradation model was modified and a new comprehensive model called "X-NFSD" was developed. The X-NFSD model is capable of predicting the flexural stiffness degradation of composite specimen at different states of stresses and at room temperature. The model was verified by means of different experimental data for chopped strand mat/epoxy composites under displacement controlled bending loading condition at different displacements and states of stresses. The obtained results provided by the present model are impressively in very good agreement with the experimental data and the mean value of error of 5.4% was achieved.

Simulation and Experimental Study for Energy Flow Dynamics of Floor Radiant Heating System (바닥복사 난방시스템의 에너지 유동특성에 관한 시뮬레이션 및 실험적 연구)

  • Ahn, Byung-Cheon;Song, Jae-Yeob;Lee, Tae-Won;Kim, Yong-Ki
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.927-932
    • /
    • 2006
  • A simulation and experimental study for energy flow dynamics of floor radiant heating system were performed. The study was done under both environmental chamber and a house with several rooms. The unsteady energy analysis method using equivalent R-C circuit and radiation heat transfer analysis of enclosure analysis method with simple structured rooms were used for computer simulation. Also, first order dynamics with time delay in analyzing the return water was considered. The results of temperature changes of the simulation study are good fit with the ones of experimental one.

  • PDF

A study on the shock & vibration characteristics of a tractor-trailer type vehicle system running on the road (트랙터-트레일러형 차량 시스템의 주행 충격진동 특성에 관한 연구)

  • 김종길
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.13-19
    • /
    • 2001
  • It is known that displacements, velocities and accelerations of the tractor- trailer type vehicle system in shock & vibration analysis by the flexible-multi-body dynamics including the flexibility of structure are bigger and more repetitive than them by the rigid-multi-body dynamics, and it is necessary to prove above results by the experimental field test. Therefore, in this paper, theoretical analysis by the flexible-multi-body dynamics and experimental field test for a tractor-trailer type vehicle system are conducted and their results are compared with each other. Because of unexpected metal contact and impact in the air coupler part in the field test, some accelerations measured from the experimental field test are bigger than them analyzed from the theoretical analysis, but most accelerations are well coincide with each other in the amplitudes and trends. Thus more refined dynamic analytical models for some special type vehicle systems will be possible in the future.

  • PDF

Fatigue modeling of chopped strand mat/epoxy composites

  • Shokrieh, M.M.;Esmkhania, M.;Taheri-Behrooz, F.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.2
    • /
    • pp.231-240
    • /
    • 2014
  • In the present research, fatigue behavior of chopped strand mat/epoxy composites has been studied with two different techniques. First, the normalized stiffness degradation approach as a well-known model for unidirectional and laminated composites was utilized to predict the fatigue behavior of chopped strand mat/epoxy composites. Then, the capability of the fatigue damage accumulation model for chopped strand mat/epoxy composites was investigated. A series of tests has been performed at different stress levels to evaluate both models with the obtained results. The results of evaluation indicate a better correlation of the normalized stiffness degradation technique with experimental results in comparison with the fatigue damage accumulation model.

Implementation and Test of the Automatic Flight Dynamics Operations for Geostationary Satellite Mission

  • Park, Sang-Wook;Lee, Young-Ran;Lee, Byoung-Sun;Hwang, Yoo-La;Galilea, Javier Santiago Noguero
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.635-642
    • /
    • 2009
  • This paper describes the Flight Dynamics Automation (FDA) system for COMS Flight Dynamics System (FDS) and its test result in terms of the performance of the automation jobs. FDA controls the flight dynamics functions such as orbit determination, orbit prediction, event prediction, and fuel accounting. The designed FDA is independent from the specific characteristics which are defined by spacecraft manufacturer or specific satellite missions. Therefore, FDA could easily links its autonomous job control functions to any satellite mission control system with some interface modification. By adding autonomous system along with flight dynamics system, it decreases the operator's tedious and repeated jobs but increase the usability and reliability of the system. Therefore, FDA is used to improve the completeness of whole mission control system's quality. The FDA is applied to the real flight dynamics system of a geostationary satellite, COMS and the experimental test is performed. The experimental result shows the stability and reliability of the mission control operations through the automatic job control.

DC Motor Model Parameter Identification and Experimental Adjustment for Motor Controller Design (제어기 설계를 위한 DC 모터의 모델 파라미터 측정 및 실험적 보정)

  • Kang, Hyeong Seok;Shin, Dong Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.12
    • /
    • pp.1147-1154
    • /
    • 2014
  • Generally, motor controller design is based on its motor dynamics. Therefore, it requires precise information of its motor dynamics. However, most of the low cost DC motors, which are widely used in industries and academia, are provided without such precise information. Even if it is given, the information is mostly imprecise. Following circumstances require one to calculate the motor dynamics information for oneself. This paper presents a simple method to readily apprehend the DC motor dynamics. First, how to establish the model of DC motor dynamics along with the model parameter identification is presented. Then, the parameter values are finetuned until the simulation response based on the dynamics model is close to the experimental response of the motor. Finally, the controller is designed with the established dynamics model. The validity of the designed controller is confirmed by the comparison of the experiment and simulation.

A Study on the Development of Vehicle Dynamic Model for Dynamic Characteristics Analysis of Chassis Parts (샤시부품 동특성 해석을 위한 전차량 해석모델 개발에 관한 연구)

  • Bae, Chul-Yong;Kwon, Seong-Jin;Kim, Chan-Jung;Lee, Bong-Hyun;Na, Byung-Chul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.10
    • /
    • pp.958-966
    • /
    • 2007
  • This study presents full vehicle dynamics model for the dynamic characteristic analysis of chassis parts which are suspension and brake system. This vehicle dynamics model is appled to kinematics and quasi-static analysis for each chassis part. In order to develop the vehicle dynamics model, the parameters of each chassis element part which are bush, spring and damper are measured by experiment. Also the wheel forces and moments of 6 DOF are measured at each wheel center. These data are applied to input parameter for vehicle dynamics model. And the verification of the developed model is achieved to comparison with the experimental force data of spring, trailing arm and assist arm by using the load response by strain gauge. These experimental force data are acquired by road test at event surfaces of P/G which are belgian and chuck holes roads.

Molecular Dynamics Simulation Studies of Zeolite A. VIII. Structure and Dynamics of Na+ ions in a Non-Rigid Dehydrated Zeolite-A Framework

  • 이송희;최상구
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.5
    • /
    • pp.587-591
    • /
    • 1999
  • A molecular dynamics simulation study on the structure and dynamics of Na+ ions in non-rigid dehydrated Na12-A zeolite framework at 298.15 K was conducted using the same method reported in previous studies on rigid and non-rigid Na12-A zeolite frameworks. The agreement between the experimental and calculated results for the zeolite-A framework atoms of structural parameters for non-rigid dehydrated Na12-A zeolite is generally quite good, and for the adsorbed Na+ions the agreement is acceptable. The calculated bond lengths are generally in good agreement with the experimental results and other theoretical data. The calculated IR spectrum by Fourier transform of the total dipole moment autocorrelation function shows two major peaks around 2700 cm-1 and 7000 cm-1. The former appeared in the calculated IR spectra of non-rigid zeolite-A framework only system and the latter remains unexplained except, perhaps, indicating a new formation of a vibrational mode of the framework due to the adsorption of Na+ ions. The peaks above 6200-6800 cm-1 in non-rigid dehydrated Nal2-A zeolite are much larger than those in non-rigid dehydrated H12-A zeolite.

Flow-induced instability and nonlinear dynamics of a tube array considering the effect of a clearance gap

  • Lai, Jiang;Sun, Lei;Li, Pengzhou
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1650-1657
    • /
    • 2019
  • Fluidelastic instability and nonlinear dynamics of tube bundles is a key issue in a steam generator. Especially, once the post-instability motion of the tube becomes larger than the clearance gap to other tubes, effective contact or impact between the tubes under consideration and the other tube inevitable. There is seldom theoretical analysis to the nonlinear dynamic characteristics of a tube array in two-phase flow. In this paper, experimental and numerical studies were utilized to obtain the critical velocity of the flow-induced instability of a rotated triangular tube array. The calculation results agreed well with the experimental data. To explore the post-instability dynamics of the tube array system, a Runge-Kutta scheme was used to solve the nonlinear governing equations of tube motion. The numerical results indicated that, when the flow pitch velocity is larger than the critical velocity, the tube array system is undergoing a limit cycle motion, and the dynamic characteristics of the tube array are almost similar for different void fractions.