• Title/Summary/Keyword: experimental apparatus

Search Result 1,175, Processing Time 0.026 seconds

AN EXPERIMENTAL STUDY ON THE MICROTENSILE BONDING STRENGTH OF DENTIN TREATED BY $CARISOLV^{TM}$ ($Carisolv^{TM}$ 에 의한 우식제거후 Microtensile Bonding Strength에 관한 연구)

  • Baik, Byeong-Ju;Kwon, Byoung-Woo;Kim, Jae-Gon;Cheon, Cheol-Wan
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.3
    • /
    • pp.389-396
    • /
    • 2002
  • The purpose of this study was to compare the microtensile bonding strength of chemomechanically excavated dentin($Carisolv^{TM}$) to conventional caries removal(bur). The following adhesive systems were used; AB: All-Bond 2(3M, USA), PB: Prime & Bond 2.1(Dentsply, DE), AQ: AQ Bond(sun medical, Japan). 42 human molars with occlusal caries were assigned to 6 groups. Sequential caries removal was controlled with laser fluorescence. Each group was devided as follows; group A, B, C were $Carisolv^{TM}$ applied, group D,E,F were bur used. In group A and D, AB was used as a dentin adhesive. group B,E and group C,F was AQ and AQ was used each. The cavity was filled with composite resin(Z-100). The specimens were sectioned vertically into multiple serial 0.7 mm thick slabs. And then those slabs were sectioned into rectangular parts under 0.7 mm width. Finally 0.7-1.0 mm a right hexahedron shape stick become. Microtensile bonding test was carried out with testing apparatus at cross-head speed of $0.5\;mm/min^{-1}$ and fractured surfaces were observed with scanning electron microscope(JSM-6400, Jeol, Japan). The obtained results were summarized as follows ; 1. In the group of caries removal with $Carisolv^{TM}$, micro-tensile bonding strength decreased to $75.8{\sim}80$ percent of bur used group. 2. In the group of caries removal with $Carisolv^{TM}$, decreased degree of micro-tensile bonding strength is not so different in 3 kinds of dentin adhesives(p<0.05). 3. In the group of caries removal with $Carisolv^{TM}$, microtensile bonding strength of AB, PB, AQ was 32.6MPa(2.4), 30.1Mpa (1.8), 21.2Mpa(1.9). 4. In the group of caries removal with Bur and $Carisolv^{TM}$, microtensile bonding strength of AQ was significantly lower than that of AB and PB(p<0.01).

  • PDF

Various Possibilities of Dispositif Film (디스포지티프 영화의 다양한 가능성)

  • KIM, Chaehee
    • Trans-
    • /
    • v.3
    • /
    • pp.55-86
    • /
    • 2017
  • This study begins with the necessity of the concept of reincarnation of film media and the inclusion of specific tendencies of contemporary films as post - cinema comes. Variable movements around recent films Challenging and experimental films show aesthetics that are difficult to approach with the analysis of classical mise en scene and montage. In this way, I review the dispositif proposed by Martin in films that are puzzling to criticize with the classical conceptual framework. This is because the concept of dispositive is a conceptual pile that extends more than a mise en scene and a montage. Dispositif films tend to be non-reproducible and non-narrative, but not all non-narrativef tendencies are dispositif films. Only the dispositif film is included in the flow. Dispositif movement has increased dramatically in the modern environment on which digital technology is based, but it is not a tendency to be found in any particular age. The movement has been detected in classical films, and the dispositif tendency has continued to exist in avant-garde films in the 1920s and some modernist films. First, for clear conceptualization of cinematic dispositif, this study examines the sources of dispositif debates that are being introduced into film theory today. In this process, the theory of Jean Louis Baudry, Michel Foucault, Agamben, Flusser, and Deleuze will help. The concept of dispositif was discussed by several scholars, including Baudry and Foucault, and today the notion of dispositif is defined across all these definitions. However, these various discussions are distinctly different from the cinematic dispositif or dispositif films that Martin advocates. Martin's proposed concept reminds us of the fundamentals of cinematic aesthetics that have distinguished between the mise-en-scene and the montage. And it will be able to reconsider those concepts and make it possible to view a thing a new light or create new films. The basic implications of dispositif are apparatus as devices, disposition and arrangement, the combination of heterogeneity. Thus, if you define a dispositif film in a word, it is a new 'constraint' consisting of rearrangement and arrangement of the heterogeneous elements that make up the conditions of the classical film. In order for something to become a new design, changes must be made in the arrangement and arrangement of the elements, forces, and forces that make up it. Naturally, the elements encompass both internal and external factors. These dispositif films have a variety of possibilities, such as reflection on the archival possibilities and the role of supervision, the reestablishment of active and creative audience, the reason for the film medium, and the ideological reflection. films can also 'network' quickly and easily with other media faster than any medium and create a new 'devised' aesthetic style. And the dispositif film that makes use of this will be a key keyword in reading the films that present the new trend of modern film. Because dispositif are so comprehensive and have a broad implication, there are certainly areas that are difficult to sophisticate. However this will have a positive effect on the future activation of dispositif studies end for end. Dispositif is difficult to elaborate the concept clearly, so it can be accessed from a wide range of dimensions and has theoretically infinite extensibility. At the beginning and end of the 21st century film, the concept of cinematic dispositif will become a decisive factor to dismantle old film aesthetics.

  • PDF

Physical properties of novel composite using Portland cement for retro-filling material (치근단 역충전용 포틀랜드 시멘트 신복합재료의 물리적 성질 고찰)

  • Lee, Sang-Jin;Cho, Ok-In;Yum, Ji-Wan;Park, Jeong-Kil;Hur, Bock;Kim, Hyeon-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.6
    • /
    • pp.445-452
    • /
    • 2010
  • Objectives: The aim of this study was to compare apical sealing ability and physical properties of MTA, MTA - AH-plus mixture (AMTA) and experimental Portland cement - Epoxy resin mixture (EPPC) for a development of a novel retro-filling material. Materials and Methods: Forty-nine extracted roots were instrumented and filled with gutta-percha. Apical root was resected at 3 mm and the retro-filling cavity was prepared for 3 mm depth. Roots were randomly divided into 3 groups of 15 roots each. The retro-filling was done using MTA, AMTA, and EPPC as the groups divided. Four roots were used as control groups. After setting in humid condition for 24 hours, the roots were immersed in 1% methylene blue dye solution for 72 hours to test the apical leakage. After immersion, the roots were vertically sectioned and photos were taken to evaluate microleakage. Setting times were measured with Vicat apparatus and digital radiographs were taken to evaluate aluminum equivalent thickness using aluminum step wedge. The results of microleakage and setting time were compared between groups using one-way ANOVA and Scheffe's post-hoc comparison at the significance level of 95%. Results: AMTA and EPPC showed less microleakage than MTA group (p < 0.05). AMTA showed the highest radio-opacity than other groups and the novel EPPC showed 5 mm aluminum thickness radio-opacity. EPPC showed the shortest initial and final setting times than other groups while the MTA showed the longest (p < 0.05). Conclusions: Under the condition of this study, the novel composite using Portland cement-Epoxy resin mixture may useful for retro-filling with the properties of favorable leakage resistance, radio-opacity and short setting time.

Experiment for Various Soils on Economic Duty of Water in Paddy Fields (각종토성별 경제적용수량 결정시험연구)

  • Hwang, Eun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.1
    • /
    • pp.1561-1579
    • /
    • 1969
  • In Korea, the duty of water in paddy fields was measured at the Agricultural Experimental Station in Suwon about 60 years ago. After that time some testing has been made in several places, but the key points in its experiment were the water depth of evapo-transpiration. Improved breeds, progress in cultivation and management techniques as well as development of measuring apparatus in recent years have necessitated the review of the duty of water in paddy fields. The necessity of reviewing the conventional methods has become even more important, as no source of information has been made available through survey of water utilization on a soil use basis which requires data on peculiar features of the water depth of evapo-transpiration. For example, the duty of water in paddy field is largely affected by the water depth of evapo-transpiration in connection with the wetted paddy field, whereas in connection with the normal paddy fields without this characteristic the vertical percolation become the predominant factor in measuring the decreasing depth of water. Therefore, it becomes important. that not only the water depth of evapotranspiration but also the vertical percolation process should also be observed in order to arrive at a realistic conclusion. As the vertical percolation has aclose relationship to the height of the underground water, the change of the latter can be measured. As the conclusion of this experiment, the following subjects are indicated. 1. In order to determine the economic duty of water in paddy fields on a basis of varying soil features, the varying soil features in the benifited area should be investigated thoroughly. The water depths of evapo-transpiration(ET) ratio to evaporation in the evaporator(V) on a basis of the varying soil features are as follows: clay loam ET/V = 1.11, loam ET/V = 1.64, sandy loam ET.V = 1.63 2. The decreasing depth of water consists of the water depth of evapotranspiration, the vertical per colation and the percolation of foot path. Among these three, the percolation of foot path can be utilized again. 3. As the result of this experiment, it shows the decreasing depth of water as follows. clay loam 9.3 mm/day, loam 13.5mm/daty, sandy loam 15.3mm/day 4. On a basis of the varying soil features and the height of the underground water, the vertical percolation varies. 5. The change of the vertical percolation on a basis of the varying soil features shows as follows: clay loam $1{\sim}2$ mm/day, loam $2{\sim}3$mm/day, sandy loam $3{\sim}4$mm/day 6. The level of the underground water changes sensibly by priority of clay loam, loam, sandy loam. When it rains, the level of the underground water rises fast and falls down slowly. 7. The level of the underground water changes within the scope of 25cm 8. The transpiration ratio is given in table 8 and their value are as follows: clay loam 168.8, loam 255.6, sandy loam 272.5

  • PDF

Studies on the Internal Changes and Germinability during the Period of Seed Maturation of Pinus koraiensis Sieb. et Zucc. (잣나무 종자(種字) 성숙과정(成熟過程)에 있어서의 내적변화(內的變化)와 발아력(發芽力)에 대(對)한 연구(硏究))

  • Min, Kyung-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.21 no.1
    • /
    • pp.1-34
    • /
    • 1974
  • The author intended to investigate external and internal changes in the cone structure, changes in water content, sugar, fat and protein during the period of seed maturation which bears a proper germinability. The experimental results can be summarized as in the following. 1. Male flowers 1) Pollen-mother cells occur as a mass from late in April to early in May, and form pollen tetrads through meiosis early and middle of May. Pollen with simple nucleus reach maturity late in May. 2) Stamen number of a male flower is almost same as the scale number of cone and is 69-102 stamens. One stamen includes 5800-7300 pollen. 3) The shape is round and elliptical, both of a pollen has air-sac with $80-91{\mu}$ in length, and has cuticlar exine and cellulose intine. 4) Pollen germinate in 68 hours at $25^{\circ}C$ with distilled water of pH 6.0, 2% sugar and 0.8% agar. 2. Female flowers 1) Ovuliferous scales grow rapidly in late April, and differentiation of ovules begins early in May. Embryo-sac-mother cells produce pollen tetrads through meiosis in the middle of May, and flower in late May. 2) The pollinated female flowers show repeated divisions of embryo-sac nucleus, and a great number of free nuclei form a mass for overwintering. Morphogenesis of isolation in the mass structure takes place from the middle of March, and that forms albuminous bodies of aivealus in early May. 3. Formation of pollinators and embryos. 1) Archegonia produce archegonial initial cells in the middle and late April, and pollinators are produced in the late April and late in early May. 2) After pollination, Oespore nuclei are seen to divide in the late May forming a layer of suspensor from the diaphragm in early June and in the middle of June. Thus this happens to show 4 pro-embryos. The organ of embryos begins to differentiate 1 pro-embryo and reachs perfect maturation in late August. 4. The growth of cones 1) In the year of flowering, strobiles grow during the period from the middle of June to the middle of July, and do not grow after the middle of August. Strobiles grow 1.6 times more in length 3.3 times short in diameter and about 22 times more weight than those of female flower in the year of flowering. 2) The cones at the adult stage grow 7 times longer in diameter, 12-15 times shorter diameter than those of strobiles after flowering. 3) Cone has 96-133 scales with the ratio of scale to be 69-80% and the length of cone is 11-13cm. Diameter is 5-8cm with 160-190g weight, and the seed number of it is 90-150 having empty seed ratio of 8-15%. 5. Formation of seed-coats 1) The layers of outer seed-coat become most for the width of $703{\mu}$ in the middle of July. At the adult stage of seed, it becomes $550-580{\mu}$ in size by decreasing moisture content. Then a horny and the cortical tissue of outer coats become differentiated. 2) The outer seed-coat of mature seeds forms epidermal cells of 3-4 layers and the stone cells of 16-21 layers. The interior part of it becomes parenchyma layer of 1 or 2 rows. 3) Inner seed-coat is formed 2 months earlier than the outer seed-coat in the middle of May, having the most width of inner seed-coat $667{\mu}$. At the adult stage it loses to $80-90{\mu}$. 6. Change in moisture content After pollination moisture content becomes gradually increased at the top in the early June and becomes markedly decreased in the middle of August. At the adult stage it shows 43~48% in cone, 23~25% in the outer seed-coat, 32~37% in the inner seed-coat, 23~26% in the inner seed-coat and endosperm and embryo, 21~24% in the embryo and endosperm, 36~40% in the embryos. 7. The content compositions of seed 1) Fat contents become gradually increased after the early May, at the adult stage it occupies 65~85% more fat than walnut and palm. Embryo includes 78.8% fat, and 57.0% fat in endosperm. 2) Sugar content after pollination becomes greatly increased as in the case of reducing sugar, while non-reducing sugar becomes increased in the early June. 3) Crude protein content becomes gradually increased after the early May, and at the adult stage it becomes 48.8%. Endosperm is made up with more protein than embryo. 8. The test of germination The collected optimum period of Pinus koraiensis seeds at an adequate maturity was collected in the early September, and used for the germination test of reduction-method and embryo culture. Seeds were taken at the interval of 7 days from the middle of July to the middle of September for the germination test at germination apparatus.

  • PDF