• 제목/요약/키워드: expected fracture load

검색결과 36건 처리시간 0.023초

탄소성 파괴해석을 위한 크랙 평면 평형모형과 항복 선형 파괴역학과의 비교에 관한 연구 (A Comparison of the Crack Plane Equilibrium Model for Elastic-Plastic Fracture Analysis with the Irwin's Plastic Zone Corrected LEFM)

  • 이규용
    • 수산해양기술연구
    • /
    • 제20권1호
    • /
    • pp.30-36
    • /
    • 1984
  • 대규모의 소성역을 동반하면서 파괴하는 고인성 재료의 탄소성 파괴 반가를 위하여 제안된 바 있는 CPE 모형의 유효성을 입증하고자 소성역의 영향을 보정한 선형 파괴역학과의 이론적 검토와 오오스테나이트계 스테인레스강에 대한 실험적 비교검토를 통하여 얻은 결론은 다음과 같다. 예측한 바와 같이 선형 파괴역학의 적용은 소규모 항복조건이 성립하는 경우에만 가능하며 CPE 모형은 대변형을 형성하면서 파괴하는 경우의 파괴모형으로서 유효하다. 더욱 엄밀한 유효성을 입증하기 위하여 다음의 사항이 필요하다고 본다. 1. 크랙의 길이가 짧은 시험편에 대한 실험이 필요하다. 2. 크랙성장 개시점을 정확하게 찾을 수 있는 방법이 필요하다. 3. 파괴 진행영역에 대한 두께의 영향을 고려해 보아야 할 필요성이 있다.

  • PDF

정적 및 반복굽힘하중을 받는 감육된 탄소강배관의 AE 특성 평가 (Acoustic Emission Characteristic with Local Wall Thinning under Static and Cyclic Bending Load)

  • 안석환;김진환;남기우;박인덕;김용운
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.134-139
    • /
    • 2002
  • Fracture behaviors of pipes with local wall thinning are very important for the integrity of nuclear power plant. However, effects of local wall thinning on strength and fracture behaviors of piping system were not well studied. Acoustic emission(AE) has been widely used in various fields because of its extreme sensitivity, dynamic detection ability and location of growing defects. In this study, we investigated failure modes of locally wall thinned pipes and AE signals by bending test. From test results, we could be divided four types of failure modes of ovalization, crack initiation after ovalization, local buckling and crack initiation after local buckling. And fracture behaviors such as elastic region, yielding range, plastic deformation range and crack progress could be evaluated by AE counts, accumulative counts and time-frequency analysis during bending test. It is expected to be basic data that can protect a risk according to local wall thinning of pipes, as a real time test of AE.

  • PDF

Application of Mechanoluminescence for the Dynamic Visualization of an Alumina Fracture

  • Kim, Ji-Sik
    • Journal of Information Display
    • /
    • 제11권1호
    • /
    • pp.33-38
    • /
    • 2010
  • The propagation of cracks was quantitatively analyzed in $Al_2O_3$ ceramic using the mechanoluminescence (ML) of $SrAl_2O_4$:Eu,Dy. The bridging zones behind the crack tip were clearly detected in the crack path of $Al_2O_3$ within a realistic time frame. The magnitudes and shapes of the bridging stress distributions changed with the advancing cracks. They continued to change with the change in the applied load even after the cessation of crack propagation. Effective toughening then commenced, and the applied stress intensity factors dramatically increased up to ~50 MPa $\sqrt{m}$. The expected $K_{Tip}$ values based on the instantaneous bridging stress distributions obtained from the ML observations deviated greatly from those obtained from the measurement using the conventional crack tip lengths; rather, they support the results obtained when bridging tips were used in the quasidynamic crack propagations.

벨로우즈를 이용한 반복 하중부과장치의 개발 및 성능시험 (Performance Tests and Development of the Cyclic Load Device Using a Bellows)

  • 최명환;조만순;박승재;김봉구
    • 대한기계학회논문집A
    • /
    • 제31권9호
    • /
    • pp.903-909
    • /
    • 2007
  • A fatigue capsule is one of the special capsules to investigate the fatigue characteristics of the nuclear materials during an irradiation test in a research reactor, HANARO. In this study, the performance test and the preliminary fatigue test results by using a cyclic load device newly developed for a fatigue capsule are described. In order to obtain the characteristics such as a realization and a controllability of the periodic wave shape and the relationship between the pressure and the load, a spring and rigid bar specimens are used. The fatigue test for the 316L stainless steel specimen with 1.8mm in diameter and 12.5mm in gage length is also performed under the same conditions as the temperature($550^{\circ}C$) of the specimen during irradiation tests. As a result of the test, the fracture of the specimen occurs at a total of 70,120 cycles(about 12 days), and the displacement in this case is 2.02 mm. It is expected that these results will be used for determining test conditions and a comparison of the in-pile fatigue test results.

FRACTURE OF HIGH-STRENGTH CONCRETE : Implications for Structural Applications

  • Darwin, David
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.11-30
    • /
    • 2000
  • Structural properties of reinforced concrete, such as bond and shear strength, that depend on the tensile properties of concrete are much lower for high-strength concrete than would be expected based on relationships developed for normal-strength concretes. To determine the reason for this behavior, studies at the University of Kansas have addressed the effects of aggregate type, water-cementitious material ratio, and age on the mechanical and fracture properties of normal and high-strength concretes. The relationships between compressive strength, flexural strength, and fracture properties were studied. At the time of test, concrete ranged in age from 5 to 180 days. Water-cementitious material ratios ranged from 0.24 to 0.50, producing compressive strengths between 20 MPa(2, 920 psi) and 99 MPa(14, 320psi). Mixes contained either basalt or crushed limestone aggregate, with maximum sizes of 12mm(1/2in). or 19mm(3/4in). The tests demonstrate that the higher quality basalt coarse aggregate provides higher strengths in compression than limestone only for the high-strength concrete, but measurably higher strengths in flexure, and significantly higher fracture energies than the limestone coarse aggregate at all water-cementitious material ratios and ages. Compressive strength, water-cementitious material ratio, and age have no apparent relationship with fracture energy, which is principally governed by coarse aggregate properties. The peak bending stress in the fracture test is linearly related to flexural strength. Overall, as concrete strength increases, the amount of energy stored in the material at the peak tensile load increases, but the ability of the material to dissipate energy remains nearly constant. This suggests that, as higher strength cementitious materials are placed in service, the probability of nonductile failures will measurably increase. Both research and educational effort will be needed to develop strategies to limit the probability of brittle failures and inform the design community of the nature of the problems associated with high-strength concrete.

  • PDF

철근콘크리트깊은보의 탄소섬유압착공법에 대한 정적파괴실험 및 해석 (Structural Analysis and Static Load Test for The R/C Deep Beam with CFS Strengthening)

  • 조병완;김영진;김도
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.117-124
    • /
    • 1998
  • Static load tests were performed to propose the appropriate strengthening method of R/C deep beam using Carbon Fiber Sheets and compared to those of nonlinear structural analysis. Fiber direction and anchorage method on the deep beam specimen were chosen as experimental variables, which lead to the following conclusions that initial shear cracks are independent of strengthening method and fiber directions perpendicular to the expected fracture mode, which was given by the nonlinear structural analysis, show better performance compared to those of horizontal and vertical fiber directions.

  • PDF

Application of Patient-Specific 3D-Printed Orthopedic Splint for Bone Fracture in Small Breed Dogs

  • Kwangsik Jang;Eun Joo Jang;Yo Han Min;Kyung Mi Shim;Chunsik Bae;Seong Soo Kang;Se Eun Kim
    • 한국임상수의학회지
    • /
    • 제40권4호
    • /
    • pp.268-275
    • /
    • 2023
  • In this paper, we designed 3D-printed orthopedic splint models for patient-specific external coaptation on fracture healing and analyzed the stability of the models through finite element method (FEM) analysis under compressive load conditions. Polylactic acid (PLA) and acrylonitrile-butadiene-styrene (ABS) based 3D splint models of the thicknesses 1, 3, 5 and 7 mm were designed, and Peak von Mises stress (PVMS) and maximum displacement (MD) of the models were analyzed by FEM under compressive loads of 50, 100, 150, and 200 N. The FEM results indicated that PVMS and MD values, regardless of material, had a negative correlation with the thickness of the models and a positive correlation with the compressive load. There was a risk of splint deformation under conditions more extreme than 100 N with 5 mm thickness. For successful clinical application of 3D-printed orthopedic splints in veterinary medicine, it is recommended that the splint should be produced not less than 5 mm thickness. Also, it is expected to be stable when the splint is applied to situations with a compressive load of 100 N or less. There is an advantage of overcoming the limitations of the existing bandage method through 3D-printing technology as well as verifying the stability through 3D modeling before application. Such 3D printing technology will be widely used in veterinary medicine and various fields as well as orthopedics.

단면결손에 따른 고장력볼트 체결부의 내하력 변화에 관한 연구 (A Study on the Change of Load Carrying Capacity of High-tension Bolt Joints by Critical Sections)

  • 박정웅;양승현;장석인
    • 한국산학기술학회논문지
    • /
    • 제10권9호
    • /
    • pp.2402-2408
    • /
    • 2009
  • 고장력볼트를 이용한 강부재의 체결에서 모재 및 덮개판의 과대공으로 인한 단면결손이 체결부에서 내하력의 저하가 우려되어 정적 인장시험을 실시하였다. 인장시험을 통하여 구해진 체결부의 파단시 최대하중을 단면결손율 및 설계강도와 비교하여 체결부의 내하력 변화를 파악하였다. 이에 따르면 단면결손율이 클수록 강도저하율이 컸으며 특히, 모재의 단면결손이 덮개판의 단면결손보다 강도저하에 대한 영향이 훨씬 큰 것으로 나타났다. 모재 및 덮개판을 과대공으로 제작한 고장력볼트 체결부는 표준공의 경우보다 내하성능이 다소 저하되었지만 파단시의 최대인장강도는 설계파단강도보다 15%이상 크게 나타났다. 본 연구에서는 과대공으로 제작된 고장력볼트 체결부에서 내하력저하에 미치는 영향이 미미하므로 강부재의 체결시공에 있어 과대공의 허용은 경제성과 효율성의 고취에 기여할 수 있을 것으로 판단되었다.

복합적층판의 층간파괴에 미치는 충격하중속도의 효과 (Effects of Impact Loading Rate on the Delamination Behavior of Composite Laminates)

  • 최낙삼
    • 대한기계학회논문집A
    • /
    • 제23권11호
    • /
    • pp.1886-1895
    • /
    • 1999
  • The delamination behavior of multidirectional carbon-fiber/epoxy composite laminates under 10NA intermediate and high rates of test, up to rate of about 11.4m s has been investigated using the double cantilever beam specimens. The mode I loading under rates above l.0m/s showed considerable dynamic effects on the load-time curves and thus higher values of the average crack velocity than that expected from a simple proportional relationship with the test rate. The modified beam analysis utilizing only the opening displacement and crack length exhibited an effective means for evaluating the dynamic fracture energy $G_{IC}$. Based on the assumption of constant flexural modulus, values of $G_{IC}$ at the crack initiation and arrest were decreased with an increase of the test rate up to 5.7m/s, but the maximum $G_{IC}$ was increased at 11.4m/s.

Seismic design of connections between steel outrigger beams and reinforced concrete walls

  • Deason, Jeremy T.;Tunc, Gokhan;Shahrooz, Bahram M.
    • Steel and Composite Structures
    • /
    • 제1권3호
    • /
    • pp.329-340
    • /
    • 2001
  • Cyclic response of "shear" connections between steel outrigger beams and reinforced concrete core walls is presented in this paper. The connections investigated in this paper consisted of a shear tab welded onto a plate that was connected to the core walls through multiple headed studs. The experimental data from six specimens point to a capacity larger than the design value. However, the mode of failure was through pullout of the embedded plate, or fracture of the weld between the studs and plate. Such brittle modes of failure need to be avoided through proper design. A capacity design method based on dissipating the input energy through yielding and fracture of the shear tab was developed. This approach requires a good understanding of the expected capacity of headed studs under combined gravity shear and cyclic axial load (tension and compression). A model was developed and verified against test results from six specimens. A specimen designed based on the proposed design methodology performed very well, and the connection did not fail until shear tab fractured after extensive yielding. The proposed design method is recommended for design of outrigger beam-wall connections.