• Title/Summary/Keyword: expansion stress

Search Result 922, Processing Time 0.029 seconds

A Study on the Cobalt Electrodeposition of High Aspect Ratio Through-Silicon-Via (TSV) with Single Additive (단일 첨가제를 이용한 고종횡비 TSV의 코발트 전해증착에 관한 연구)

  • Kim, Yu-Jeong;Lee, Jin-Hyeon;Park, Gi-Mun;Yu, Bong-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.140-140
    • /
    • 2018
  • The 3D interconnect technologies have been appeared, as the density of Integrated Circuit (IC) devices increases. Through Silicon Via (TSV) process is an important technology in the 3D interconnect technologies. And the process is used to form a vertically electrical connection through silicon dies. This TSV process has some advantages that short length of interconnection, high interconnection density, low electrical resistance, and low power consumption. Because of these advantages, TSVs could improve the device performance higher. The fabrication process of TSV has several steps such as TSV etching, insulator deposition, seed layer deposition, metallization, planarization, and assembly. Among them, TSV metallization (i.e. TSV filling) was core process in the fabrication process of TSV because TSV metallization determines the performance and reliability of the TSV interconnect. TSVs were commonly filled with metals by using the simple electrochemical deposition method. However, since the aspect ratio of TSVs was become a higher, it was easy to occur voids and copper filling of TSVs became more difficult. Using some additives like an accelerator, suppressor and leveler for the void-free filling of TSVs, deposition rate of bottom could be fast whereas deposition of side walls could be inhibited. The suppressor was adsorbed surface of via easily because of its higher molecular weight than the accelerator. However, for high aspect ratio TSV fillers, the growth of the top of via can be accelerated because the suppressor is replaced by an accelerator. The substitution of the accelerator and the suppressor caused the side wall growth and defect generation. The suppressor was used as Single additive electrodeposition of TSV to overcome the constraints. At the electrochemical deposition of high aspect ratio of TSVs, the suppressor as single additive could effectively suppress the growth of the top surface and the void-free bottom-up filling became possible. Generally, copper was used to fill TSVs since its low resistivity could reduce the RC delay of the interconnection. However, because of the large Coefficients of Thermal Expansion (CTE) mismatch between silicon and copper, stress was induced to the silicon around the TSVs at the annealing process. The Keep Out Zone (KOZ), the stressed area in the silicon, could affect carrier mobility and could cause degradation of the device performance. Cobalt can be used as an alternative material because the CTE of cobalt was lower than that of copper. Therefore, using cobalt could reduce KOZ and improve device performance. In this study, high-aspect ratio TSVs were filled with cobalt using the electrochemical deposition. And the filling performance was enhanced by using the suppressor as single additive. Electrochemical analysis explains the effect of suppressor in the cobalt filling bath and the effect of filling behavior at condition such as current type was investigated.

  • PDF

Production of Foamed Glass by Using Hydrolysis of Waste Glass(III) - Heat Treatment for Stabilization and Scale-up Test - (폐유리의 가수분해 반응에 의한 발포유리의 제조(III) - 안정화 열처리공정 및 Scale-up Test -)

  • Lee, Chul-Tae;Um, Eui-Heum
    • Applied Chemistry for Engineering
    • /
    • v.17 no.1
    • /
    • pp.73-81
    • /
    • 2006
  • Heat treatment condition for the stabilization of foamed glass block through the foaming process of the hydrolized waste glass was investigated and scale-up test for the manufacturing of foamed glass was also attempted for the actual foaming process. Proper heat treatment condition was quenching from the foaming temperature to $550{\sim}600^{\circ}C$ for stabilization, and then annealing from stabilization temperature to $200^{\circ}C$ and holding up at $200^{\circ}C$ for removal thermal stress, and then annealing to the room temperature with cooling speed of $0.3^{\circ}C/min$. Through this heat treatment conditions, foamed glass block with size of $250mm{\times}250mm{\times}90mm$ was produced successfully. The properties of this foamed glass block showed density of $0.28{\pm}0.06g/cm^3$, thermal conductivity of $0.048{\pm}0.005kcal/hm^{\circ}C$, moisture absorption of $0.5{\pm}0.09vol%$, linear expansion coefficient of $(8.6{\pm}0.2){\times}10^{-6}m/m^{\circ}C$($400^{\circ}C$), flexural strength of $15.0{\pm}0.6kg/cm^2$, and compression strength of $39.5{\pm}0.6kg/cm^2$.

Characteristic and Adhesive Strength Change by Heat Treatment of the Plasma Sprayed $ZrO_{2}$- Thermal Barrier Coatings(TBC) (플라즈마 용사된 $ZrO_{2}$-단열 코팅층의 특성 및 열처리에 따른 접합강도변화)

  • Kim, Byoung-Hee;Suhr, Dong-Soo
    • Korean Journal of Materials Research
    • /
    • v.8 no.6
    • /
    • pp.505-512
    • /
    • 1998
  • In this study, two-layer thermal barrier coatings composed of plasma sprayed 0.3mm $ZrO_2(8wt% Y_2o_3)$ ceramic coating layer and O.lmm $NiCrAlCoY_20_3$ bond coating layer on AISI 316 were investigated microstructure of the coating, oxidation of the metallic bond coating and adhesive strength to evaluate the durability of coating layer after cyclic and isothermal test at 90$0^{\circ}C$. And quantitative phase analysis of $ZrO_2(8wt% Y_2o_3)$ ceramic coating was performed as a function of thermal exposure time using XRD technique. The results showed that the amount of m - 2rO, phase in the coating was slightly increased with increasing thermal exposure time at 90$0^{\circ}C$. The c/a ratio of t' - $ZrO_2$ in the as-sprayed coating was 1.0099 and slightly increased to 1.0115 after 100 hours heat treatment. It was believed that $Y_2O_3$ in high yttria tetragonaJ(t') was transformed to low yttria tetragonaJ(t) by $Y_2O_3$ diffusion with increasing thermal exposure time. The adhesive strength was gradually decreased as thermal exposure time increased. After the isothermal test, the failure predominantly occured in ceramic coating layer. On the other hand. the specimens after cyclic thermal test were mostly failed at bond coating/ceramic coating interface. The failure was oeeured by decreasing the bond strength between bond coating and oxide scale which were formed by oxidation of the metallic elements within bond coating and by thermal stress due to thermal expansion mismatches between the oxide scale and ceramic coating.

  • PDF

Oxidation Behavior at the Interface between E-beam Coated $ZrO_{2}$-7wt.%$Y_{2}O}_{3}$and Plasma Sprayed CoNiCrAlY (전자빔 코팅 및 플라즈마 용사에 의한 안정화지르코니아/CoNiCrAlY 계면의 산화거동)

  • Choi, Won-Seop;Kim, Young-Do;Jeon, Hyeong-Tag;Kim, Hyon-Tae;Yoon, Kook-Han;Hong, Kyung-Tae;Park, Jong-Ku;Park, Won-Sik
    • Korean Journal of Materials Research
    • /
    • v.8 no.6
    • /
    • pp.538-544
    • /
    • 1998
  • The spallation of a thermal barrier coating layer depends on the formation of brittle spinels. thermal expansion mismatch between ceramic and metal. the phase transformation of a ceramic layer and residual stress of coating layer. In this work. the formation mechanism of oxide scale formed by oxidation treatment at 90$0^{\circ}C$ was investigated in order to verify oxidation behavior at the interface between E-beam coated $Zr0_2$-7wt.% $Y_20_3$ and plasma sprayed CoNiCrAIY. Some elements distributed in the bond coating layer were selectively oxidized after oxidation. At the initial time of oxidation. AI-depletion zone and $\alpha$-$Al_O_3$,O, were formed at the bond coating layer by the AI-outward diffusion. After layer grew until critical thickness. spinels. $Cr_20$, and $C0_2CrO_4$ by outward diffusion of Co. Cr, Ni were formed. It was found that the formation of spinels may be related to the spallation of $Zr0_2$-7wt.% $Y_20_3$ during isothermal oxidation.

  • PDF

A Study on the Planning Characteristics of Training Facilities Complex - Focusing on Training Facilities Planned through the Domestic Competitions after 2000s - (연수시설 단지의 계획특성 연구 - 2000년대 이후 국내 현상공모를 통해 계획된 연수시설을 중심으로 -)

  • Park, Hoon
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.25 no.1
    • /
    • pp.13-24
    • /
    • 2018
  • Planning and designing training facilities has been developed from educational facilities, and increasingly diversified society has raised a need for facilities dedicated to training and education in a differentiated space separate from the one for regular works. This particular need of our times has led to the expansion of training facilities nationwide although they have something to be desired when it comes to planning and designing with sustainability associated with the locational characteristics of urban space as well as the unique types of facilities taken into account. Against this backdrop, this study will examined a variety of training facilities that have been established since 2000 through theoretical review and conduct intensive analysis on the characteristics of the planning aspects to suggest their significance and implications and to present the overall meanings and ramifications of planning approaches in consideration of new challenges modern training facilities are faced with, which have been revealed through architectural design competitions in recent years. The relevant implications are as follows. First, one of the locational advantages of training facilities, which is commanding beautiful scenery of the surrounding area, can be considered as intent to stress the aspect of a resort, one of the functions of any training facilities. As this study has demonstrated, many training facilities are located near around a beach or a lake. Second, training facilities can be classified into three different types in terms of their location: urban, suburban and resort and such locational characteristics are directly related to intended programs and differentiated links with target users. Third, the architectural styles of training institutes are differentiated in terms of harmonious arrangement between beautiful natural scenery and buildings in consideration of the layout characteristics of major facilities and the distance of ramps in and out of the facilities along with architectural features, including the transparency of building elevation and the type of slopes of roof structure. Fourth, the individual lodging buildings feature a variety of types depending on the design concept with different roles depending on the directional aspects such as the connection of ramps and the relations with the outside. Fifth, outdoor space plans are differentiated according to the intended purpose of training facilities. When it comes to gym facilities, for example, different outdoor space plans are found to be made depending on the original design concept such as outdoor playground-centered planning or golf facilities.

Numerical Analysis for Thermal-deformation Improvement in TSOP(Thin Small Outline Package) by Anti-deflection Adhesives (TSOP(Thin Small Outline Package) 열변형 개선을 위한 전산모사 분석)

  • Kim, Sang-Woo;Lee, Hai-Joong;Lee, Hyo-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.3
    • /
    • pp.31-35
    • /
    • 2013
  • TSOP(Thin Small Outline Package) is the IC package using lead frame, which is the type of low cost package for white electronics, auto mobile, desktop PC, and so on. Its performance is not excellent compared to BGA or flip-chip CSP, but it has been used mostly because of low price of TSOP package. However, it has been issued in TSOP package that thermal deflection of lead frame occurs frequently during molding process and Au wire between semiconductor die and pad is debonded. It has been required to solve this problem through substituting materials with low CTE and improving structure of lead frame. We focused on developing the lead frame structure having thermal stability, which was carried out by numerical analysis in this study. Thermal deflection of lead frame in TSOP package was simulated with positions of anti-deflection adhesives, which was ranging 198 um~366 um from semiconductor die. It was definitely understood that thermal deflection of TSOP package with anti-deflection adhesives was improved as 30.738 um in the case of inside(198 um), which was compared to that of the conventional TSOP package. This result is caused by that the anti-deflection adhesives is contributed to restrict thermal expansion of lead frame. Therefore, it is expected that the anti-deflection adhesives can be applied to lead frame packages and enhance their thermal deflection without any change of substitutive materials with low CTE.

Effects of Hot Isostatic Pressing on Bond Strength and Elevated Temperature Characteristics of Plasma sprayed TBC (HIP처리가 플라즈마 용사된 열차폐 코팅층의 접착강도와 고온특성에 미치는 영향)

  • Park, Young-Kyu;Kim, Sung-Hwi;Kim, Doo-Soo;Lee, Young-Chan;Choi, Cheol;Jung, Jin-Sung;Kim, Gil-Moo;Kim, Jae-Chul
    • Korean Journal of Materials Research
    • /
    • v.10 no.4
    • /
    • pp.312-316
    • /
    • 2000
  • A study has been made to investigate the effects of hot isostatic pressing(HIP ping) on bond strength and elevated temperature characteristics of thermal barrier coating(TBC). The specimens were prepared by HIPping of TBC which is composed of the ceramic top coat(8wt%$Y_2$$O_3$-$ZrO_2$) and the metallic bond coat on the matrix of IN738LC superalloy. The results showed that the porosity and microcracks in the ceramic top coat of TBC were significantly decreased by HIP. As a result, the bond strength of the HIPped coating was increased above 48% compared to that of as-coated specimen and microstructure was homogenized. It was found that the thermal cycle resistance of HIPped coating was inferior to that of as-coated specimen. It was considered that this result was mainly caused by the reduction of internal defects in the top coat layer which could play a role in relaxing the thermal stress due to a large difference in thermal expansion between TBC and matrix.

  • PDF

Evaluation of Weathering Intensity and Strength Parameter for Weathered Granite Masses (I) (화강 풍화암의 풍화도 및 강도정수의 평가 (I))

  • 이종규;장서만
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.227-236
    • /
    • 2003
  • The evaluation of the reliable strength and deformation characteristics of weathered granite masses is very important for the design of geotechnical structure under working stress conditions. Various types of laboratory test such as triaxial compression test can be performed to determine the strength parameters. However, it is very difficult to obtain the representative undisturbed samples on the site and also the rock specimen cannot represent rock mass including discontinuities, fracture zone, etc. This study aims to investigate the strength and deformation characteristics of granite masses corresponding to its weathering and develop a practical strength parameter evaluation method using the results of PMT. To predict weathering intensity and strength parameters of the weathered granite masess in the field, various laboratory tests and in-situ tests including field triaxial test and PMT are carried out. Based on the results of weathering index tests, the classification method is proposed to identify the weathering degree in three groups for the weathered granite masses. Using the analytical method based on the Mohr-Coulomb failure criteria and the cavity expansion theory, the strength parameters of rock masses were evaluated from the results of PMT. It shows that weathering intensity increases with decreasing the strength parameters exponentially. The strength parameters evaluated with the results of PM almost coincide with the results of field triaxial test.

A Study on the Hydration Reaction Model of Expansive Additive of Ettringite-Gypsum Type (에트링가이트-석탄 복합계 팽장재의 수화반응 모델에 관한 연구)

  • Park Sun Gyu;Takahumi Noguchi;Kim Moo-Han
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.581-586
    • /
    • 2005
  • High-performance concrete (HPC), which is particularly sensitive to self-desiccation, is required to be durable even in severe environmental conditions, i.e. costal area, cold district, etc. However, in recent years, some attention was particularly given to cracking sensitivity of high performance concrete at early age. It has been argued and demonstrated experimentally that such concrete undergoes autogenous shrinkage due to self-desiccation at early age under restrained condition, nd, as a result, internal tensile stress may develop, leading to micro cracking and macro cracking. This shrinkage-introduced crack produces a major serviceability problem for concrete structures. One possible method to reduce cracking due to autogenous shrinkage is the addition of expansive additive. Tests conducted by many researches have shown the beneficial effects of addition of expansive additive for reducing the risk of autogenous shrinkage-introduced cracking. However, the research on hydration model of expansion additive has been hardly researched up to now. This paper presents a study of the hydration model of Ettringite-Gypsum type expansive additive. As a result of comparing forecast values with experiment value, proposed model is shown to expressible of hydration of expansive additive.

Application Effect Analysis of The Modular Construction Method in The Extension Works (저층 교육시설 증축공사에서 모듈러 공법의 적용효과 분석)

  • Kim, Hakcheol;Shin, Dongwoo;Cha, Heesung;Kim, Kyungrai
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.6
    • /
    • pp.101-111
    • /
    • 2015
  • The modular construction method has been getting more attention followed by global eco-friendly trend as the domestic construction industry has focused more on remodeling and extension work. The modular construction method is an industrialized construction system which is not likely as the existing construction method it manufactures more than 70% modules at the factory then assembling can be completed in a short amount of time on site. The modular construction method has various strengths; shortening of construction period by on-site work decrease, weight pressure reduction by usage of light steel frames and cost saving by repetitive manufacturing. However, it is currently not expanded due to the existing commercialized construction method. Therefore, this research is in order to help the related authorities make decisions to select the construction method and motivate expansion of modular construction method which can be utilized effectively in the extension works. The intention of this research is to stress differentiation from other construction methods in construction period, construction expenses, labor and forces by comparing and analyzing actual cases, to inform competitiveness of modular construction method by concrete effect analysis and to support adoption of the modular construction method into the domestic industry.